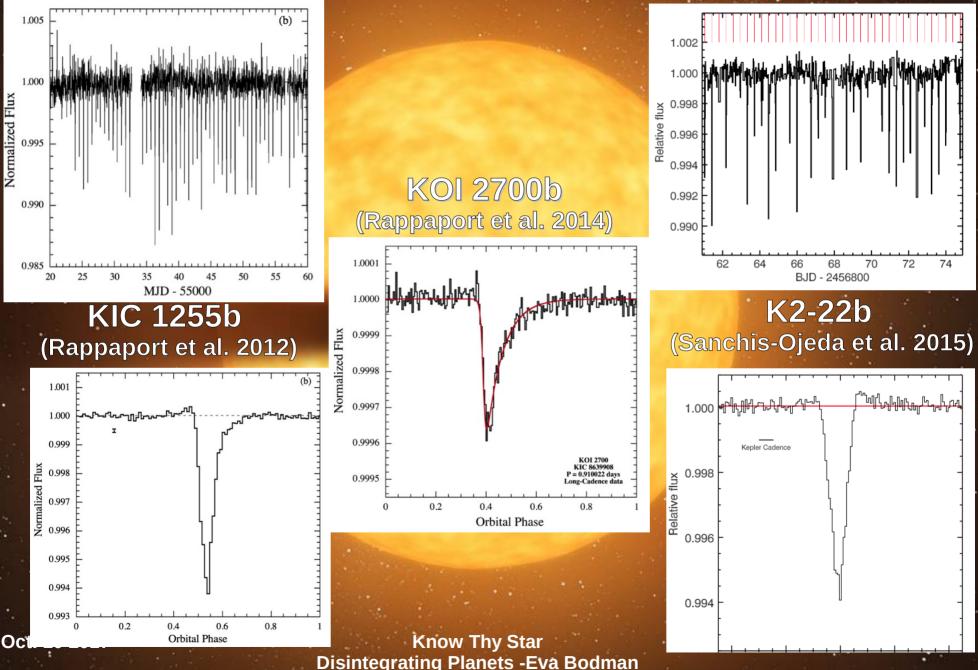
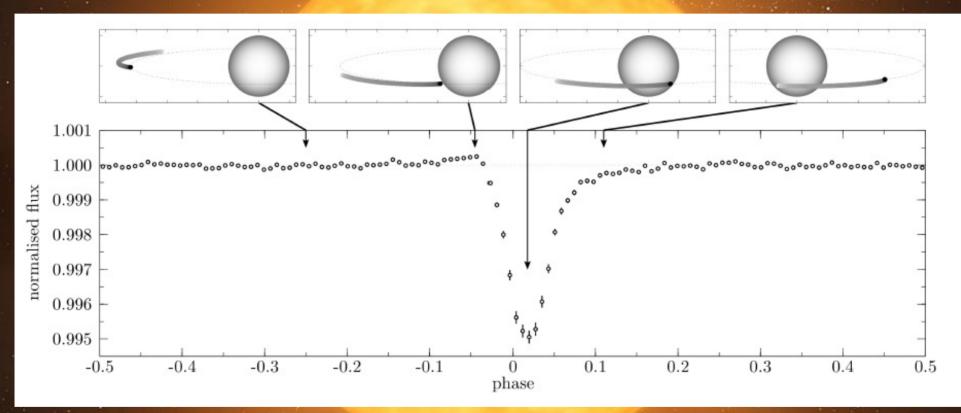
Using Disintegrating Planets to Study Planetary Interior Composition


Eva Bodman NEXSS NPP Arizona State University

Steve Desch, ASU Jason Wright, Penn State

What is a Disintegrating Planet?

What is Disintegrating Planet?


- Ultra short period, <24 Hrs
- Sub-Mercury sized planet
- High surface temperatures
 - Molten surface, evaporating rock
- Dust condenses, forms comet-like dust tail

Disintegrating Planet

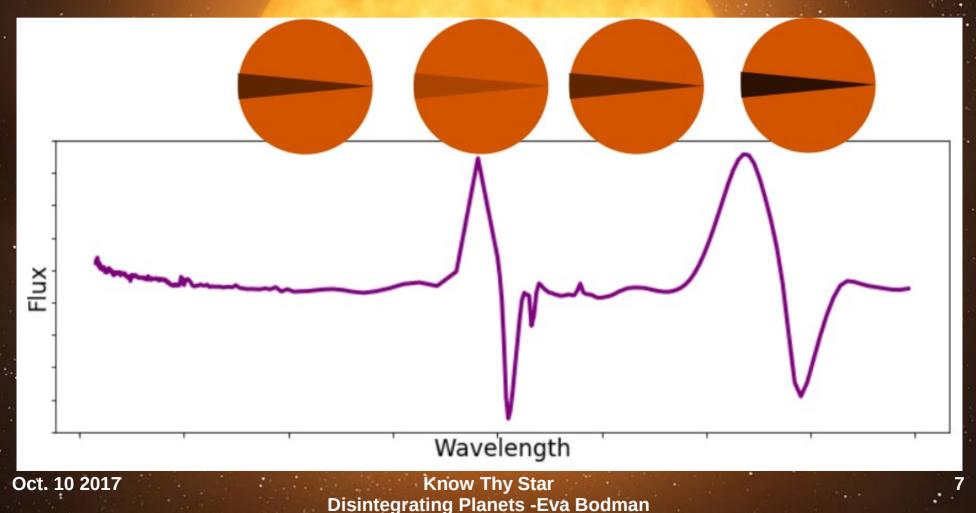
Know Thy Star Disintegrating Planets -Eva Bodman

Disintegrating Planet Transit

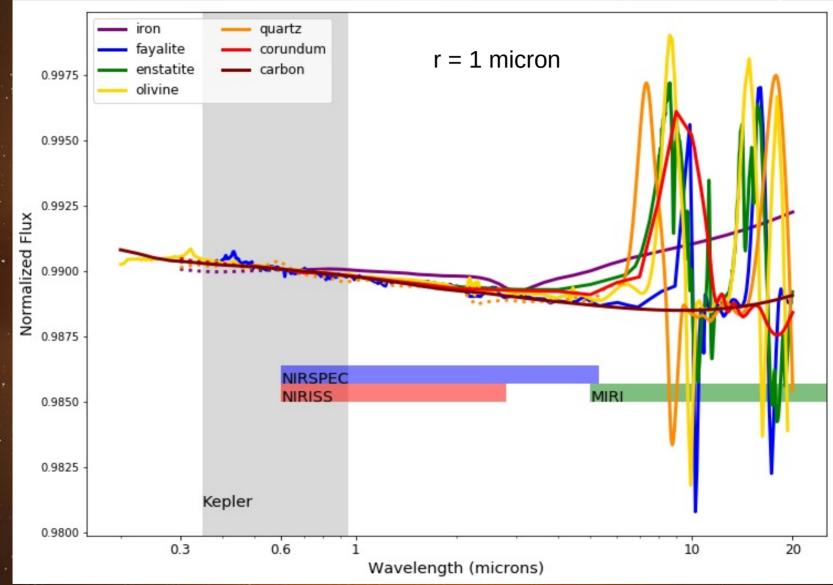
van Lieshout et al. (2016)

5

Unique Opportunity for Composition

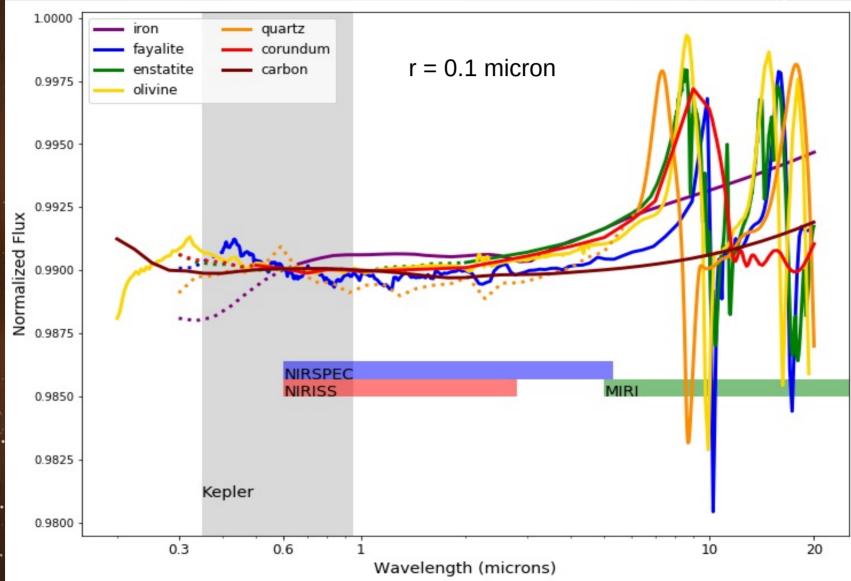

- Bulk composition
 - Mass-radius relationships
 - WD pollution
 - Host star's abundances

Disintegrating planets allow for direct composition of mantle material of an exoplanet


Oct. 10 2017

Model Spectra

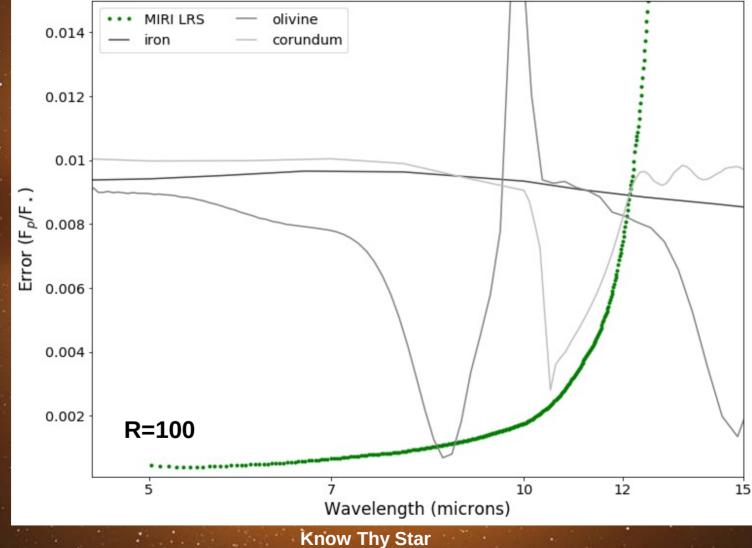
- Cloud with flat opacity
- Wavelength dependency from Mie Theory



Preliminary Results

Oct. 10 2017

Size Dependencies



Oct. 10 2017

JWST Error Estimates

PandExo -Batalha et al. 2017

Oct. 10 2017

Disintegrating Planets - Eva Bodman

Star Properties

Parameter	Symbol [units]	KIC 1255b	KOI-2700b	K2-22b
Host star parameters				
Stellar temperature	$T_{\rm eff,\star}$ [K]	4550 ± 135	4300 ± 140	3830 ± 100
Surface gravity	$\log g [cgs]$	4.62 ± 0.04	4.71 ± 0.05	4.65 ± 0.12
Metallicity	[Fe/H]	-0.2 ± 0.3	-0.7 ± 0.3	0.03 ± 0.08
Stellar mass	$M_{\star}~[{ m M}_{\odot}]$	0.67 ± 0.06	0.55 ± 0.04	0.60 ± 0.07
Stellar radius	R_{\star} [R $_{\odot}$]	0.67 ± 0.06	0.54 ± 0.05	0.57 ± 0.06
Stellar luminosity	L_{\star} [L $_{\odot}$]	0.17 ± 0.04	0.09 ± 0.02	0.063 ± 0.008
Stellar rotation period	Prot [days]	22.9	11.0	15.3
Maximum β ratio of dust ^a	$\beta_{\rm max}$	0.19	0.12	0.07
Radial velocity variations ^b	<i>K</i> [m/s]	< 150		< 280

van Lieshout and Rappaport (2017)

Thank You!

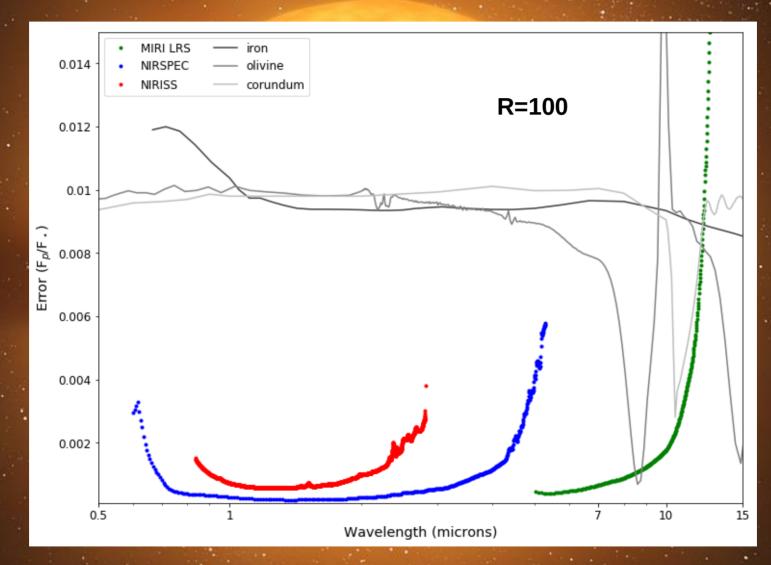
Questions?

Oct. 10 2017

Know Thy Star Disintegrating Planets -Eva Bodman

12

System Properties


	Parameter	Symbol [units]	KIC 1255b	KOI-2700b	K2-22b
17	Host star parameters				
	Stellar temperature	$T_{\rm eff,\star}$ [K]	4550 ± 135	4300 ± 140	3830 ± 100
	Surface gravity	log g [cgs]	4.62 ± 0.04	4.71 ± 0.05	4.65 ± 0.12
	Metallicity	[Fe/H]	-0.2 ± 0.3	-0.7 ± 0.3	0.03 ± 0.08
	Stellar mass	$M_{\star} [\mathrm{M}_{\odot}]$	0.67 ± 0.06	0.55 ± 0.04	0.60 ± 0.07
	Stellar radius	R_{\star} [R _{\odot}]	0.67 ± 0.06	0.54 ± 0.05	0.57 ± 0.06
	Stellar luminosity	L_{\star} [L $_{\odot}$]	0.17 ± 0.04	0.09 ± 0.02	0.063 ± 0.008
	Stellar rotation period	Prot [days]	22.9	11.0	15.3
	Maximum β ratio of dust ^a	$\beta_{\rm max}$	0.19	0.12	0.07
-	Radial velocity variations ^b	K [m/s]	< 150		< 280
	Planet: light curve propertie	s			
	Orbital period	$P_{\rm orb}$ [hr]	15.68	21.84	9.146
	Transit depth (range)	δ [%]	0-1.4	0.031-0.053	0-1.3
	Mean transit depth	$\left< \delta \right>$ [%]	0.5	0.036	0.55
	Variability		fast	slow	fast
	Long egress		yes	yes	no
	Pre-ingress bump		yes	?	weak
	Post-egress bump		no	no	yes
	Planet: derived parameters				
	Planet radius	$R_{\rm p} [\rm R_{\oplus}]$	$\lesssim 1$	< 0.5	< 3
	Semi-major axis	$a_{\rm p}$ [AU]	0.0129(4)	0.0150(4)	0.0088(8)
	Scaled semi-major axis	$a_{\rm p}/R_{\star}$	4.3 ± 0.4	5.9 ± 0.4	3.3 ± 0.2
-	Transit impact parameter	b	0.6 ± 0.1	< 1.0	0.42 - 0.78
	Angular radius of star ^c	θ * [°]	13	10	17
	Tail length ^d	θ _{tail} [°]	$\sim 10 - 15$	~ 24	< 6
•	Planet's peak temperature ^e	$T_{\rm eff,p}$ [K]	2100	1850	2100
	Planet's dust mass-loss rate	<i>M</i> _d [10 ¹¹ g/s]	~ 2	~ 0.06	~ 2

van Lieshout and Rappaport (2017)

Oct. 10 2017

Disintegrating Planets - Eva Bodman

JWST Error Estimates (Continued)

Oct. 10 2017