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●  Accurate stellar parameters for exoplanet host stars are crucial;  Need to know the stellar radius to know 
the planet radius 

●  Stellar metallicity influences planet formation. The detailed chemistry of the stars plays a role in planet 
formation 

Why M-dwarfs?  

●  Most numerous type of star in the Galaxy –  Important for Galactic Archeology (Know Thy Galaxy!) 

●  Low-mass; Low luminosity; Long-lived (almost live for ever); not evolved 

●  M-dwarfs are important in the search for Earth-like exoplanets: M dwarfs have more small planets 

●  Kepler2 targets skewed towards the cooler dwarfs: ~40% of K2 targets are K + M dwarfs 

●     Look towards future exoplanet searches— Future missions like TESS will discover lots of Earth-like  
exoplanets around M-dwarfs. 

●      M-dwarfs are the least studied class of stars; detailed chemistry not known 

 



M-dwarfs: The usefulness of IR 
 
•  Most of the chemical abundance work to date has been done 

for FGK stars in the optical 

•  M dwarfs:  
       Fainter at optical wavelengths than in the IR 

•  Detailed chemical compositions via optical spectroscopy is 
difficult—at best 

•  Optical spectra are covered with molecular lines / bands;  
       atomic lines are compromised by TiO +  
 
•  Near-infrared spectra are much cleaner e.g., APOGEE 

spectra  
  
 
 

 
 
 

 Bean et al. (2006) 

 Lindgren & Heiter  (2017) 

 Souto et al. (2017) 

Teff=3444 log g=4.98 [Fe/H]= -0.09 

Teff=3300 log g=4.89 [Fe/H]= +0.36 APOGEE 



APOGEE: The “Big Picture” 

Probe the Milky Way through the extinction 

  

•  Chemical Abundance survey > Galactic 
Chemical Cartography; the primary mission 
is focused on red giants 

•  APOGEE spectrograph: R = 22,500 NIR H-
band (λ1.52-1.69µm); 300-fibers 

•  Part of SDSS III & IV 
  
•  ~280,000 stars in most recent release: 

DR14 

•  APOGEE-1 (2011 – 2014) 

•  APOGEE-2 adds complete sky coverage 
from Las Campanas 2.5m  

•  500,000 stars by 2020 

•  All data and data products are public 
 



APOGEE Abundance Pipeline: ASPCAP  
Best fit synthetic spectra from matches to synthetic library 
Via simultaneous 7-D optimization of Teff, log g, [Fe/H], [C-N-alpha/Fe],(ξ) 
(no C and N but vsin i in dwarfs) 
 
 
APOGEE Data Products: 
•  Radial Velocities (~150 m/s precision); multiple epochs 
•  Stellar atmospheric parameters 
•  Chemical Abundances of  21 elements in red giants (≤ 0.1 dex internal precision); elements from most of the 

different types of nucleosynthesis 
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•  APOGEE is primarily a survey of red giants; the abundance pipeline cannot properly handle M-dwarfs 

•  BUT M-dwarfs have been observed with APOGEE  

APOGEE elements in blue 
SN II: α-elements— O, Mg, Si, S, Ca,Ti 
SN II: Z-dependence—Na, Al, K, Sc, V, Mn, Co, Cu 
SN II (?): r-Processà Eu, Yb? 
SN II: Neutrino Processà 19F 
SN Ia: Fe, Ni, Si (mostly SN II) 
Red Supergiants/Giants: 13C, 14N 
AGB: s-ProcessàY, Zr, Ba, 12C(?), Ce,  Nd 
AGB: Hot Bottom Burningà 7Li, 14N 
 

APOGEE can study elements from most of the different 
types of nucleosynthesis 



Enter APOGEE @ M-dwarf Territory   

•  ASPCAP stellar parameters in public DR 14 show 
significant offsets for M-dwarfs 

ASPCAP 

 Jonsson et al. (2017) 
 (PARSEC isochrones used) 
 

  

 
•   The APOGEE Survey is opening a new window to characterize 

M-dwarfs in detail —  plays to APOGEE’s strengths 

•  Transforming the APOGEE survey of red-giants into a survey 
that also targets M-dwarfs 

 Initially not targeting M-dwarfs:  
•   M-dwarfs observed serendipitously + one RV project  

•  Proposed by ancillary projects: 
    PI V. Smith: “M-dwarfs with planets in the Kepler and K-2 fields”  
  
•   Currently adding M-dwarfs to plates whenever possible 
 

APOGEE-1 + on going APOGEE-2   
•  ~12,000 M-dwarfs already observed with APOGEE  
    (Sloan telescope + NMSU 1-m telescope) 
 
•  Survey mode: Potential to observe large number of M-dwarfs at 

high-resolution in the H-band  

•  After SLOAN 4 > will continue to fulfill this potential 
 



 Sample 
“Proof of concept” Sample: high S/N, warm (Teff~3850K; log g~4.75) … 
demonstrate that this is feasible 
 

➢   Kepler-138: 3 exoplanets; Kepler-138b > Mars-like size planet 
➢   Kepler-186: 5 exoplanets; Kepler-186f > earth-size planet @ HZ 
 

“Benchmark” Sample: Calibration sample for establishing the baseline scales 
for Teff, metallicity + abundances, investigate offsets in the results 
 
•  11 are in binary systems with hotter companions (these can be analyzed 

from optical spectra) +   

•  2 stars with interferometric radii (Teff can be obtained directly)  
     (Boyajian et al. 2012) 

•  M-dwarfs in open clusters > M67; Pleiades (PhD thesis of Cintia Martinez)  
               

Using APOGEE to Pioneer Precision Chemical Abundances in M-dwarfs 

•  The effort of the APOGEE team is focused on modeling red giants 
 
v   Need a chemical abundance analysis tailored for the M-dwarfs  

   



APOGEE spectrum of Kepler 138  

•  Apogee pixels carry information on the detailed chemistry of M-dwarfs: 14 elements —   
      C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe +  Ni (recently added for metal-rich stars) 
   
•     Not as many elements as in the red giants as some of the spectral lines become too weak: e.g. CN 

•  Atomic lines of 12 species; only A(C) and A(O) come from molecular lines only  
 

 Souto et al. (2017) 

How many elements can be analyzed in the APOGEE spectra of M-dwarfs? 
 

•  Dominated by OH 
lines 

•  H2O is weak at 
Teff~3850 K 



       Construction of the original APOGEE line list: 
•  Compilation of initial list from the Kurucz semi-empirical line list + laboratory-based atomic and 

molecular data from a variety of literature sources     (Shetrone et al. 2015)  
 
•  Astrophysical gfs: Modify the line list by fitting the Sun & Arcturus with adjustments to gf-values 
      (+ lambdas + damping constants); NOT changing the gf –values of molecular lines +  
      additional elements from unidentified lines,  e.g., Nd & Ce (Hasselquist et al. 2016 & Cunha et al. 2017)  

•     Need to add crucial molecular transitions not in the original  
       APOGEE line list that are visible in the cool dwarfs but weak or  
       non-existent in the low gravity red giants 

•  Presence of H2O that becomes very important for low Teffs and 
FeH that does not appear in the red giants 

 
      Molecular lines important for M-dwarfs   
•  H2O (Barber et al. 2006) à 26M lines in APOGEE window; cut 

to ~1M lines for inclusion in line list 
   
•  FeH (Hargreaves et al. 2010) + SiH Kurucz (CD-ROM 18) + 

other hydrides (not in DR14) 

•  Work in progress: Continue to improve and identify missing lines 
(other hydrides?) 

Adjusting the APOGEE line list to analyze M-dwarfs 

   Molecular lines: CN Kurucz (CD-ROM 18) + Brooke et al. 2014; CO Kurucz (CD-ROM 18) +   Goorvitch (1994); OH Goldman et al. (1998); C2 
Kurucz (CD-ROM 18) + Brault et al. (1982) and Kokkin et al. (2007); H2 Kurucz (CD-ROM 18) + Atomic lines 

H2O 

H2O 

FeH 

FeH 

Goal: To construct a line list between 1.5 -- 1.7 microns that is adequate for M-dwarfs  



Teff 

Log g 

Kepler 138 

Examples of the sensitivity of the OH, H2O 

•  Step 2 > Computation of detailed abundances  
•  Select spectral lines/windows to derive the abundances of 14 elements 

Select lines/windows and 
derive abundances for 14 
elements from  atomic 
lines… 

Teff 

Log g 

Use windows to isolate 
pixels with most 
information…minimize 
residuals 

•  OH is not very sensitive to Teff  
       but more sensitive to log g 
 

Fe I 



Examples of Best fit syntheses 

 Souto et al. (2017) 

   Computation of Synthetic Spectra 
       

➢  1-D LTE plane parallel  
➢ MARCS model atmospheres 

(Gustafsson et al. 2008)  
   
➢  Turbospectrum synthesis code  
     (Plez 2012) 

 
 

Typical spectrum 
Not perfect telluric removal 



<δ> = 16±100 K <δ>= 35± 150 K <δ> = 112±100 K 

 

Effective Temperature & Surface Gravity scales 

APOGEE Results for M-Dwarfs 

Preliminary… 

Teff 
•  Good agreement and reasonable scatter with the calibration 
from Mann et al., with almost no offset 
 
•  Small offset with the calibration of Boyajian et al. with a 
larger scatter 
 
•  Bigger offset with Casagrande et al. (2008) > Their scale is cooler 

Log g 
•  Our spectroscopic log gs are preliminary; look reasonable 

Purely spectroscopic 



•  M-dwarfs in binary systems with hotter 
primaries of spectral types FGK   

•  Metallicities for M-dwarfs 
•  Probing regime:  
       Teff: ~ 3200K -- 4000K; 
       [m/H]: ~ -0.9 -- +0.2 dex 
 

•  Green points from the H2O+OH Teff scale 
with metallicities from Fe I (Souto et al. 
2017) 

      
•  <δ A(Fe) (M-dwarfs - Hot primaries)> = 

0.035 ± 0.063 

•  Work in progress: move to a more metal 
poor scale? 

 
 
 
       Metallicities of hot Primaries: 
•  From high-resolution studies @ optical 
•  Not homogeneous 
•  Several determinations per star (average 

[Fe/H]) 
 
       

 
 

Metallicity Scale [Fe/H] : Binary Star Sample 

Adibekyan et al. 2012; Bensby et al. 2014;  Carretta 2013; de Silva et al. 2015; Mann et al.2013; Ghezzi et al. 2010; Lambert et al. 2004; 
Mishenina et al. 2008; Ramírez et al. 2007, 2012; Reddy et al. 2006; Santos et al. 2003 

 

Binary sample 

Binary stars 

M-Dwarfs 
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APOGEE Results for M-Dwarfs 
Preliminary… 



       Kepler 138 and Kepler 186: 

•    Similar Teff and log g 
•    Similar sub-solar metallicities: [Fe/H] ~ -0.20 
      (updated using all 4 Teff indicators) 

•     Also have similar C/O ratios  
      (controls ice chemistry in protoplanetary disk)  
      Kepler 138 C/O = 0.55 
      Kepler 186 C/O = 0.52 
 
      However, 
 
      Kepler-186 is silicon rich: [Si/Fe] = +0.18  
      Kepler-138 is not: [Si/Fe] = 0.00 

 
 

❖  Different Mg/Si can affect core-to-mantle mass 
ratios in rocky exoplanets (Unterborn et al. 2016) 

     Kepler 138 Mg/Si = 1.02 
     Kepler 186 Mg/Si = 0.82 
  

 

APOGEE Results for M-dwarfs: Kepler targets  

Chemical Abundances of M-Dwarfs from the Apogee Survey. I.  
The Exoplanet Hosting Stars Kepler-138 and Kepler-186 

  Souto, D., Cunha, K., …Smith, V. V. ,… Teske, J. et al., 2017, ApJ, 835, 239 



Conclusions 
 
v  M-dwarfs can be analyzed from high-resolution APOGEE spectra at 1.5 – 1.7 micra !!!!!  

v  Stellar parameters (Teff, log g, metallicities) + Detailed abundances for 14 elements can be derived from 
APOGEE spectra (Ni recently included) 

– investigate planet-star connections 
 
v  M-dwarfs in binary systems with hotter components, as well as M dwarfs members of the M67 open cluster, 

play an important role in confirming the M dwarfs APOGEE metallicity scale and establishing the benchmark 
metallicity that does not suffer from atomic diffusion in M 67 

 
     Work in Progress… 
v  This is a pioneering detailed chemical study of M-dwarfs from high-resolution APOGEE spectra in the H-band 
 
v  We have updated the line list to better handle M-dwarfs and will continue this work 

v  Progress has been made on a new FeH line list; new FeH line list solved most of the missing lines from the 
line list  

v  Work continues to identify remaining unknown lines in the observed M-dwarf spectra: a small number of lines 
are still unidentified 

v  Need to study effects of activity  
 
v  ‘Perfecting’ M-dwarf analysis is important for future exoplanet studies  
        Data Driven modeling needs good sets of abundances as training sets. 
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Thanks to the APOGEE team! The many people who 
contributed to the APOGEE targeting, observing, data 
reduction, model atmospheres calculations, line list  
construction etc… )  

THANK YOU! 


