Stellar physics and exoplanetary science

Martin Asplund

Australian Government Australian Research Council

Stellar modeling and exoplanets

Stars: Convection Evolution Oscillations Atmospheres Spectra Composition

Stellar

models

Exoplanets: Detection Age Mass Radius Atmospheres Composition

Stellar modeling and exoplanets

Stars: Convection Evolution Oscillations Atmospheres Spectra Composition

Stellar

models

Exoplanets: Detection Age Mass Radius Atmospheres Composition

Stellar surface convection

3D stellar atmosphere models

Ingredients:

- Radiative-hydrodynamical
- Time-dependent
- 3-dimensional
- Simplified radiative transfer
- **Essentially parameter free**

For the aficionados:

Stagger-code (Nordlund et al.) MHD equation-of-state (Mihalas et al.) MARCS opacities (Gustafsson et al.) Opacity binning (Nordlund)

3D atmosphere simulation

Temporal evolution of entropy in atmosphere of metal-poor red giant

Observational tests

Stagger-grid of 3D stellar models

Magic et al. 2013; Collet et al. 2012: 3D and <3D> models and fluxes public: •Stellar spectroscopy •Stellar evolution •Asteroseismology •Exoplanet searches •Etc, etc

Convection across HR-diagram

Stellar modeling and exoplanets

Stars: Convection **Evolution** Oscillations Atmospheres Spectra Composition

Stellar

models

Exoplanets: Detection Age Mass Radius Atmospheres Composition

Stellar evolution

Calibrating mixing length theory

Magic et al. 2015:

Calibration of MLT with evolution models with different α_{MLT} to match entropy at depth

Note: Stellar evolution models should have identical microphysics as 3D surface models

Predicted variations of α_{MLT}

Magic et al. (2015):

Similar α_{MLT} along evolutionary tracks Varying α_{MLT} with stellar mass

Stellar modeling and exoplanets

Stars: Convection Evolution **Oscillations** Atmospheres Spectra Composition

Stellar

models

Exoplanets: Detection Age Mass Radius Atmospheres Composition

Asteroseismology

Exoplanets 🖊 Asteroseismology

Asteroseismology ⇒ Stellar radius + mass ⇒ Planetary radius + mass See Daniel Huber's talk

Solar oscillations

P-modes driven by convective motions near surface

P-mode frequencies: 1D

Wrong frequencies predicted with 1D stellar models

Correct for "surface effects":

$$v_{\rm obs}(n) - v_{\rm best}(n) = a \left[\frac{v_{\rm obs}(n)}{v_0} \right]$$

calibrated on Sun only (Kjeldsen et al. 2008)

Be careful when doing asteroseismology with individual frequencies!

1D models with <3D> surface

3D models can't predict all modes due to finite simulation box ⇒ Patch 1D interior models with average <3D>_{xy,t} models ⇒ Larger atmospheric extension + spatial inhomogenities ⇒ Oscillation frequencies shifted: "surface effects"

P-mode frequencies: <3D>

P_{turb} and horizontal fluctuations increase scale height (acoustic cavity) and lowers p-mode frequencies

(2009)

al.

et

Nordlund

Stellar modeling and exoplanets

Stars: Convection Evolution Oscillations Atmospheres Spectra Composition

Stellar

models

Exoplanets: Detection Age Mass Radius Atmospheres Composition

Temperature structure

3D model atmospheres have different T(tau) than 1D ⇒ Different spectra and limb darkening

Limb-darkening and transits

3D spectra and limb-darkening

Magic et al. 2015, Chiavassa et al. 2017:

Predicted stellar spectra, colours, limb-darkening and convective line shifts for full grid of Stagger 3D models of FGK stars publicly available

Stellar modeling and exoplanets

Stars: Convection Evolution Oscillations Atmospheres Spectra **Composition**

Stellar

models

Exoplanets: Detection Age Mass Radius Atmospheres Composition

Stellar spectroscopy in 3D

3D non-LTE now possible:

- Complex atoms: Fe
 Amarsi et al. 2017
- >10⁵ stars: GALAH survey Amarsi et al. 2018
 More accurate stellar parameters and abundances

Stellar radiation and stellar
atmosphere interconnected:
⇒ Non-local & non-linear
⇒ "Everything depends on
everything, everywhere"
⇒ 3D non-LTE line formation

The solar yardstick

Z	Element	Photosphere	Meteorites	Z	Element	Photosphere	Meteorites
1	Н	12.00	8.22 ± 0.04	44	Ru	1.75 ± 0.08	1.76 ± 0.03
2	He	$[10.93 \pm 0.01]$	1.29	45	Rh	0.91 ± 0.10	1.06 ± 0.04
3	Li	1.05 ± 0.10	3.26 ± 0.05	46	Pd	1.57 ± 0.10	1.65 ± 0.02
4	Be	1.38 ± 0.09	1.30 ± 0.03	47	Ag	0.94 ± 0.10	1.20 ± 0.02
5	В	2.70 ± 0.20	2.79 ± 0.04	48	Cd		1.71 ± 0.03
6	С	8.43 ± 0.05	7.39 ± 0.04	49	In	0.80 ± 0.20	0.76 ± 0.03
7	N	7.83 ± 0.05	6.26 ± 0.06	50	Sn	2.04 ± 0.10	2.07 ± 0.06
8	0	8.69 ± 0.05	8.40 ± 0.04	51	Sb		1.01 ± 0.06

Asplund et al. 2009, ARAA, 47, 481; Scott et al. 2015ab; Grevesse et al. 2015: 3D-based analysis of <u>all elements</u> Statistical <u>and</u> systematic errors included in total uncertainties

25	Mn	5.43 ± 0.04	5.48 ± 0.01	69	Tm	0.10 ± 0.04	0.12 ± 0.03
26	Fe	7.50 ± 0.04	7.45 ± 0.01	70	Yb	0.84 ± 0.11	0.92 ± 0.02
27	Co	4.99 ± 0.07	4.87 ± 0.01	71	Lu	0.10 ± 0.09	0.09 ± 0.02
28	Ni	6.22 ± 0.04	6.20 ± 0.01	72	Hf	0.85 ± 0.04	0.71 ± 0.02
29	Cu	4.19 ± 0.04	4.25 ± 0.04	73	Tà		$-0.12 \ \pm \ 0.04$
30	Zn	4.56 ± 0.05	4.63 ± 0.04	74	W	0.85 ± 0.12	0.65 ± 0.04
31	Ga	3.04 ± 0.09	3.08 ± 0.02	75	Re		0.26 ± 0.04
32	Ge	3.65 ± 0.10	3.58 ± 0.04	76	Os	1.40 ± 0.08	1.35 ± 0.03

Sun has a subsolar metallicity

(Anders & Grevesse 1989)

Z=0.014±0.002 (Asplund et al. 2009)

He

Mainly ~40% decrease in CNO Problem w/ helioseismology!

Stellar abundances as proxies

Bond et al. 2010: C/O, Mg/Si critical for planet formation Nissen 2013: Small C/O ratios with little cosmic scatter See Megan Bedell's talk!

Beware: Forbidden and permitted CI and OI lines with different systematic effects ⇒ 3D non-LTE

What about other Suns?

Melendez et al. 2009: Sun vs solar twins

Precision spectroscopy critical!

Planet signature in (some) binaries

Stellar physics and exoplanets

Stars: Convection Evolution Oscillations Atmospheres Spectra Composition

Exoplanets: Detection Age Mass Radius Atmospheres Composition

Brown dwarfs

Freytag et al. (2010)

2D radiative-hydrodynamical models of brown dwarfs Dust formation included but without nucleation Dust clouds in higher layers maintained by gravity waves Variability on short time-scales

What about magnetic fields?

Beeck et al. (2015)

Granulation pattern changes: bright and dark features

Higher temperatures in upper atmospheres

To do: systematically explore HR-diagram with more realistic magnetic field configurations

Sunspot models

Rempel et al. (2013)

Note: imposed sunspot structure beforehand

Excitation of solar p-modes

Granulation background

Asteroseismic scaling relations

Chaplin & Miglio 2013

 $\left(\frac{M}{M_{\odot}}\right) \simeq \left(\frac{\nu_{\max}}{\nu_{\max}}\right)^{3} \left(\frac{\langle \Delta \nu_{nl} \rangle}{\langle \Delta \nu_{nl} \rangle_{\odot}}\right)^{-4} \left(\frac{T_{\text{eff}}}{T_{\text{eff}}}\right)^{1.5},$

Departures from scaling relations for stars different from the Sun? *e.g. T*_{eff}, log*g*, [Fe/H]

Global scaling relations

Spatially resolved lines

Line profiles vary tremendously across the solar surface

3D model describes observations very well in most cases

Trouble in paradise

Solar interior models with new abundances are in conflict with helioseismology

- Wrong sound speed
- Wrong depth of convection zone: R=0.723 vs 0.713±0.001
- Wrong surface helium abundance: Y=0.235 vs 0.248±0.004

Missing opacity

