

Atmosphere SURvEy

Jayne Birkby

The exoplanet zoo is rich in diversity

Mars	0.12	Venus Earth
er Star	0.10	
ets b 0	0.08	
erioan A	0.06	
ital p	0.04	
Q L Q	0.02	
	0.00	.7 1.0

Observe planet's dayside at high spectral resolution

0.6

Phase

Observe planet's dayside at high spectral resolution

Use template matching (cross-correlation) to find molecules in spectrum (e.g. water, carbon monoxide)

Phase

0.4

0.6

Inversion layers are common in the Solar system

Robinson & Catling 2013

bar **P**1 Ć **LGSSI** 0.1

500

1350 Temperature / K

ltitude

1500

Temperature / K

ltitude

1500

Temperature / K

MEASURE: the MMT Exoplanet Atmosphere SURvEy A 40 night program on an AO-assisted 6.5 m telescope at R=30,000 with 1.5-2.5 micron simultaneous wavelength coverage

Instantaneous wavelength coverage of ARIES/MMT

MEASURE: the MMT Exoplanet Atmosphere SURvEy A 40 night program on an AO-assisted 6.5 m telescope at R=30,000 with 1.5-2.5 micron simultaneous wavelength coverage

MEASURE: the MMT Exoplanet Atmosphere SURvEy

A 40 night program on an AO-assisted 6.5 m telescope at R=30,000 with 1.5-2.5 micron simultaneous wavelength coverage

Nine hot Jupiters (two transiting), two sub-Saturns, five observed dayside and nightside, four non-transiting Spitzer phase curves

A 40 night program on an AO-assisted 6.5 m telescope at R=30,000 with 1.5-2.5 micron simultaneous wavelength coverage

Nine hot Jupiters (two transiting), two sub-Saturns, five observed dayside and nightside, four non-transiting Spitzer phase curves

MEASURE: the MMT Exoplanet Atmosphere SURvEy

Adapted from Fortney et al. 2008

A 40 night program on an AO-assisted 6.5 m telescope at R=30,000 with 1.5-2.5 micron simultaneous wavelength coverage

Nine hot Jupiters (two transiting), two sub-Saturns, five observed dayside and nightside, four non-transiting Spitzer phase curves

MEASURE: the MMT Exoplanet Atmosphere SURvEy

Adapted from Fortney et al. 2008

Until recently, thermal inversions in low resolution spectroscopy were unclear

HD209458 b Spitzer broadband photometry

Diamond-Lowe et al. 2014; Zellem et al. 2014

Until recently, thermal inversions in low resolution spectroscopy were unclear

This Work

HD 209458 b in high-resolution: Schwarz et al. 2015 - no emission lines Hoeijmakers et al. 2015 - no TiO

5 6 7 8 9 1 0 Wavelength [µm]

HD209458 b Spitzer broadband photometry

Diamond-Lowe et al. 2014; Zellem et al. 2014

WASP-33 b orbits a δ Scuti pulsating variable star adding ambiguity to its precise eclipse depth

tensity Relative

WASP-33 b orbits a δ Scuti pulsating variable star adding ambiguity to its precise eclipse depth

nsity Relativ

WASP-33 b orbits a δ Scuti pulsating variable star adding ambiguity to its precise eclipse depth

nsity Relativ

Stratosphere finally seen at high significance in a hot Jupiter!

~	
	$\mathbf{\tilde{\mathbf{x}}}$
	\sim

TiO detected in hot Jupiter WASP-19 b

Sedaghati et al. 2017

Transition region for inversion layers in hot Jupiters likely hotter than initial predictions

Transition region for inversion layers in hot Jupiters likely hotter than initial predictions

Planet Mass (M_J)

Preliminary results from MEASURE

Multi-resolution spectroscopy places tight constraints on metallicity and C/O ratios

lost relative Metallicity

10

Brogi et al. 2017

100 Planet Mass (M_{Earth})

1000

Include planet formation scenarios in our atmospheric models

Eistrup et al. 2017

Take home messages

- We are stepping into the era of detailed exoplanet characterization and 1. comparative exoplanetology.
- 2. Combining multi-resolution datasets is an important next step forward for exoplanet atmosphere characterization.
- High resolution spectroscopy may be our only avenue forward in the coming 3. decades to characterize the very **nearest non-transiting temperate worlds**.
- AO-assisted high-resolution spectrographs are an essential resource for future exoplanet studies.

http://staff.fnwi.uva.nl/j.l.birkby

