Measuring the Atmospheres of (the best!) Earth-sized Planets with JWST

Caroline Morley Sagan Fellow, Harvard University Laura Kreidberg Zafar Rustamkulov Ty Robinson

> Photo by C. Morley Top of Mt Whitney, California, on Planet Earth

Terrestrial planet atmospheres in the solar system are diverse and controlled by many physical processes

Venus

Earth

100 bar CO₂ sulfuric acid clouds no oceans surface is hellscape

1 bar N_2/O_2 oceans & hydro cycle surface is nice

1 bar N₂ hydro cycle surface is (really) cold

Titan

Mars

6 mbar CO₂ methane lakes and former liquid water surface is cold

volatile planet interior atm loss UV flux composition delivery (ocean loss) (photochemistry) mass

How do terrestrial atmospheres form and evolve in planetary systems?

Two big problems: 1. very small sample size 2. all around the same star For the first time ever, we have discovered temperate, terrestrial planets for which we have a fighting shot of characterizing their atmospheres

all small planets around some of the smallest nearby stars

Berta-Thompson et al. 2016 Dittmann et al. 2017

Gillon et al. 2017

Outline

generating a diverse set of model planet spectra (transmission and emission)

simulating observations with JWST

Good experimental setup: these planets span **sizes** from 0.7 to 1.4 R_{Earth} and T_{eq} from ~150 to 500+ K.

Some masses appear to be Earth-like (rock/iron); others may be low density?

We construct a grid with a range of "plausible" compositions/surface pressures

We construct atmospheres with simple temperature structures and chemistry

We model the molecular compositions assuming chemical equilibrium Venus 1 bar

Surface temperature increases with surface pressure; depends on composition and assumed albedo.

Planet composition strongly effects the emergent spectrum, including where bright/faint windows are.

Transmission spectra of the different compositions show a variety of spectral features (CO_2 , H_2O , CH_4)

Morley et al. (in press)

Transmission spectra for all 9 planets; uncertainties in the planet's mass strongly affect the feature amplitude.

For 1–100 bar atmospheres, **thermal emission** spectra are much more sensitive to **surface pressure** than transmission spectra

All ~400 models (including emission spectra, transmission spectra, and MIRI eclipse depths) are publicly available online!

https://www.carolinemorley.com/models https://doi.org/10.5281/zenodo.1001033

MORLEY ET AL. 2017: TRAPPIST/MEARTH PLANET MODELS

Model transmission and emission spectra, as well as JWST MIRI eclipse depths, for each of the 7 TRAPPIST-1 planets as well as two terrestrial planets found by MEarth, GJ 1132b and LHS 1140b.

Download Models

Outline

generating a diverse set of model planet spectra (transmission and emission)

simulating observations with JWST

Planet	Emission	Emission	Emission	Transmission	Transmission	Transmission
	P = 0.1 bar	P = 1.0 bar	P = 10.0 bar	P = 0.01 bar	P = 0.1 bar	P = 1.0 bar
TRAPPIST-1b	6 (11)	9 (18)	17 (30)	23 (89)	11 (40)	6 (21)
TRAPPIST-1c	19 (37)	29 (58)	48 (92)	-	73 (50)	36 (25)
TRAPPIST-1d	-	-	-	59 (-)	25 (46)	13 (24)
TRAPPIST-1e	-	-	-	15 (-)	6 (66)	4 (71)
TRAPPIST-1f	-	-	-	73 (-)	27 (92)	17 (54)
TRAPPIST-1g	-	-	-	36 (-)	15 (-)	10 (76)
TRAPPIST-1h	-	-	-	16 (-)	6 (90)	4 (56)
GJ 1132b	2 (2)	2 (3)	3 (6)	27 (38)	13 (20)	11 (13)
LHS 1140b	-		-	-	- (96)	- (64)
	- /-					

Table 1. Number of transits or eclipses required to detect a Venus-like atmosphere^a

rock/iron composition (measured mass)

1.	 A number of these planets may be good transmission spectroscopy targets: TRAPPIST-1b, d, e, f, g, h? GJ 1132b 				to detect a Venus-like atmosphere ^a			
					Ti P	ransmission = 0.01 bar	Transmission P = 0.1 bar	Transmission P = 1.0 bar
	TRAPPIST-1b	6 (11)	9 (18)	17 (30)		23 (89)	11 (40)	6 (21)
	TRAPPIST-1c	19 (37)	29 (58)	48 (92)		-	73 (50)	36 (25)
	TRAPPIST-1d	-	-	-		59 (-)	25 (46)	13 (24)
	TRAPPIST-1e	-	-	-		15 (–)	6 (66)	4 (71)
	TRAPPIST-1f	-	-	-		73 (–)	27 (92)	17 (54)
	TRAPPIST-1g	-	-	-		36 (-)	15 (-)	10 (76)
	TRAPPIST-1h	-	-	-		16 (–)	6 (90)	4 (56)
	GJ 1132b	2 (2)	2 (3)	3 (6)		27 (38)	13 (20)	11 (13)
	LHS 1140b	-				-	- (96)	- (64)
	/ rock/iron composition (measured mass)							

Table 1. Number of transits or eclipses requ				2. We have at least 2 great therma				
Planet	Emission P = 0.1 bar	Emission P = 1.0 bar	Emissio P = 10.0 l	emission s (TRAPPIS	emission spectroscopy targets (TRAPPIST-1b and GJ 1132b)			
TRAPPIST-1b	6 (11)	9 (18)	17 (30)) 23 (89)	11 (40)	6 (21)		
TRAPPIST-1c	19 (37)	29 (58)	48 (92	2) –	73 (50)	36 (25)		
TRAPPIST-1d	-	-		- 59 (-)	25 (46)	13 (24)		
TRAPPIST-1e	-	-		- 15 (-)	6 (66)	4 (71)		
TRAPPIST-1f	-	-		- 73 (-)	27 (92)	17 (54)		
TRAPPIST-1g	-	-		- 36 (-)	15 (-)	10 (76)		
TRAPPIST-1h	-	-		- 16 (-)	6 (90)	4 (56)		
GJ 1132b	2 (2)	2 (3)	3 (6	i) 27 (38)	13 (20)	11 (13)		
LHS 1140b	-				- (96)	- (64)		
	rock/iron c	/ ompositior	n (measure	ed mass)				

= 3. We ne	eed more plan JWS	e precise 5T obser	constrainvations of	nts on pla f "rocky"	net's mas planets	ses to
TRAPPIST-1b	6 (11)	9 (18)	17 (30)	23 (89)	11 (40)	6 (21)
TRAPPIST-1c	19 (37)	29 (58)	48 (92)	-	73 (50)	36 (25)
TRAPPIST-1d	-	-	-	59 (-)	25 (46)	13 (24)
TRAPPIST-1e	-	-	-	15 (-)	6 (66)	4 (71)
TRAPPIST-1f	-	-	-	73 (-)	27 (92)	17 (54)
TRAPPIST-1g	-	-	-	36 (-)	15 (-)	10 (76)
TRAPPIST-1h	-	-	-	16 (-)	6 (90)	4 (56)
GJ 1132b	2 (2)	2 (3)	3 (6)	27 (38)	13 (20)	11 (13)
LHS 1140b	-		_	-	- (96)	- (64)
	. /-	/ ,	·	•		

rock/iron composition (measured mass)

For the best targets, we can detect spectral features and discern compositions

Conclusions

With dedicated JWST observations of the best systems, we can detect the **atmospheres of terrestrial planets** for the first time

We generated a diverse set of model transmission & emission spectra based on solar system planet compositions that are published as a community resource

JWST simulations show that this will be a significant investment of resources, but we can (potentially) measure differences in compositions, temperatures, and surface pressures

