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Doppler spectrometers
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Current instrumental state of the art in precision Doppler spectroscopy
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Pushing	towards	Earth-mass	planets	will	require	a	shi9	in	technologies	

Earth-size planets in the Habitable-zone 

Improve measurement precisions in the 
optical 

Improved spectrometer design 
Optical frequency combs 
Dedicated telescope time 

Shift focus to M-
dwarfs 

Larger Doppler signals 
NIR spectrometers 

Over 50% of stars 
within 

 25 pc are M-dwarfs 
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The Habitable-zone Planet Finder (HPF) instrument


h;p://hpf.psu.edu/	

Near-infrared 
spectrometer
 10 meter telescope


NSF MRI funded, Fall 2011




The Hobby-Eberly Telescope


•  Located	at	McDonald	Observatory	
•  10	meter	effecJve	aperture	
•  Fixed	zenith	angle	design.	
•  University	partners:	UT	AusJn,	PSU,	

Stanford,	Munich,	GoQngen	
•  Queue-based	observing	
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The	Habitable-zone	Planet	Finder	Spectrometer	

•  Near-infrared	coverage	(800	–	1300	nm)	
•  Cryogenic	operaJon	(180	K),	0.1	mK	thermal	stability	achieved	
•  Fed	by	custom	opJcal	fiber	delivery	system,	op4cal	frequency	comb	calibra4on	source	
•  <1	m/s	single	measurement	precision	goal	(J<10,	30	min)	
•  Q3	2017	delivery	 12	
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HPF	opJcal	train	

•  Asymmetric	white-pupil	design.	
•  R4	echelle	graJng	for	primary	dispersion,	VPH	grism	for	cross-dispersion	
•  R	=	50,000,	z/Y/J	band	coverage	(800	–	1300	nm),	1.5”	fiber	w/	0.5”	slit	
•  1.7	micron	cutoff	Hawaii-2RG	detector	 13	
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Simulated HPF focal plane on H2RG detector 
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Primary	calibraJon	source	is	broadband	laser	frequency	comb	

•  Picket	fence	of	lines	Jed	to	
atomic	standard.	

•  Stable	at	the	<1	cm	s-1	level.	

•  HPF	will	use	broadband	electro-
opCc	comb	for	primary	
calibraCon	
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Block diagram of HPF EOM laser comb 
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Illumination stability is critical 

•  Fundamentally,	spectrometer	records	monochromaCc	images	of	fiber	face	
–  Guiding	errors	and	telescope	pupil	changes	manifest	as	spectral	line	changes*	

•  Not	traced	with	calibraJon	source	
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Specialty fibers essential for stabilizing spectrometer PSF 
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Single fiber: 
 Fibers + double scrambler: 
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Optic integration complete 
Echelle grating VPH grism 

Camera assembly 



Thermal	control	stability	within	cryostat	

Robertson+	2016	



Environmental	control	precision	



First	light	laboratory	image	
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h;p://neid.psu.edu/	



NASA Exoplanet roadmap 

TESS launch 



WIYN telescope

•  Located	@	Ki;	Peak	in	southern	Arizona	
•  3.5	meter	primary	mirror	
•  Partners:	Wisconsin,	Indiana,	NOAO,	NSF	
•  NN-Explore	program	announced	in	2015	for	

dedicated	exoplanet	research	
•  140	nights	/	year	allocated	to	exoplanet	studies	
•  Queue-based	observing	implemented	for	NEID	

GTO	program	(30	queue	nights	per	year,	5	years)	

25	h;p://www.noao.edu/wiyn/	



NEID: the next technological step in Doppler measurement 
machines 

•  Covers	full	opJcal	range	(380	–	930	nm)	
•  Precision	goal	is	10	cm	s-1	(not	including	star)	
•  Broadband	commercial	op4cal	frequency	comb	calibra4on	source	
•  Q3	2018	delivery	 26	
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NEID optical layout 

•  Fiber-fed,	symmetric	white-pupil	design.	
•  R4	disperser,	large	prism	cross-disperser	
•  R	=	100,000,	380	–	930	nm	coverage	
•  9k	x	9k	e2v	CCD,	10	micron	pixel	pitch	(90	x	90	mm)	 27	
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Wide spectral grasp is essential 

•  Wide	bandwidth	essenJal	for	acJvity	indicators	
•  Enables	study	of	wide	range	of	spectral	types	

HARPS

NEID




What does 10 cm s-1 look like? 

TEM image of silicon wafer lattice	
Ki Bun Kin, SPIE 2012 
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Major component fabrication well underway 

Echelle grating complete 

Prism being fabricated 

Vacuum chamber, 
radiation shield, optical 

bench complete 
HPF


NEID
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New	technologies	to	tackle	old	problems	

•  Beyond	the	era	where	single	instrumental	error	
source	dominates	measurement	precision	

•  NEID	will	require	suite	of	cuQng	edge	
technologies	to	reach	precision	goal:	
–  Broadband	commercial	laser	frequency	comb	

calibra4on	source	
–  Stabilized	broadband	fabry-perot	etalon	source	

(Halverson+	2012,	Halverson+	2013,	Halverson+	2014a)	
–  Extremely	stable	instrument	illumina4on.								

(Halverson	&	Roy+	2015,	Halverson+	2016a)	
–  New	fiber	modal	noise	mi4ga4on	techniques	

(Halverson+	2014b,	Mahadevan	&	Halverson+	2014)	
–  Improved	CCD	characteriza4on	and	calibra4on																	

(Blake	&	Halverson+	2017,	Halverson+	2017	in	prep)	
–  Solar	contamina4on	mi4ga4on	techniques																	

(Roy	&	Halverson+	2017,	in	prep.)	
–  Novel	barycentric	correc4on	techniques	
–  …	
–  …	n	->	∞	

Halverson JPL Colloquium 
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Performance budgeting is key for estimating measurement precision at these levels


Halverson+ 2016b Halverson JPL Colloquium 



New era of high precision Doppler spectroscopy


•  HPF will be first NIR RV planet hunter on 10 m telescope (Q3 2017)

•  Large	aperture	gives	unparalleled	access	to	wide	array	of	nearby	M-dwarfs		
•  Valuable	instrument	for	following	up	TESS	M-dwarf	targets,	down	selecJon	for	JWST	
•  Will	uJlize	a	suite	of	new	technologies	to	probe	the	M-dwarf	planet	discovery	space:	

–  Highly	stabilized	opJcal	train	
–  OpJcal	frequency	comb	calibraJon	source	
–  Unique	opJcal	fiber	delivery	system	
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•  NEID aims to be next technological step in Doppler spectroscopy for finding Earth-twins

•  Gives	US	community	unprecedented	capability	for	planet	detecJon,	follow-up	of	interesJng	

targets	discovered	by	TESS	/	K2,	direcJon	for	JWST	/	WFIRST-AFTA	
–  Queue-based	observing,	combined	with	extremely	stable	spectrometer.	
–  Builds	off	technologies	developed	for	HPF	
–  Modeling	of	instrumental	errors	at	the	cm/s	level	is	key	for	understanding	systemaJcs,	

charJng	path	towards	10	cm	s-1	


