Improvement on Exoplanet Detection Methods and Analysis via Gaussian Process Fitting Techniques

$\bullet \bullet \bullet$

Bryce B. A. Van Ross^{1, 2}, Johanna K. Teske²

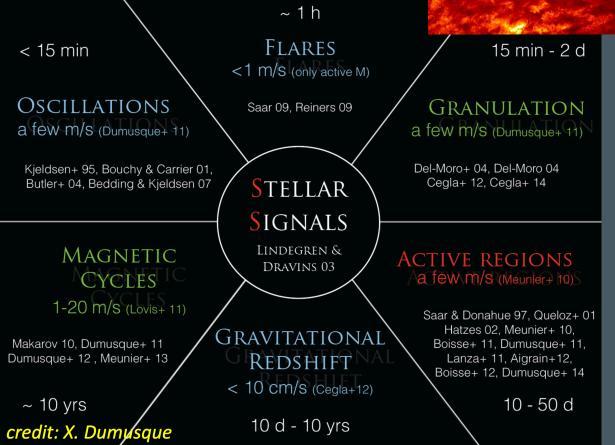
¹Dept. of Mathematics, CSU Los Angeles

²Carnegie Observatories

Motivation

- Finding (*small*) exoplanets proves difficult ... but possible!
- Existing problems include:
 - Our instrumentation isn't precise enough (*should be* 10cm/s).
 - Stellar activity of host stars complicate our readouts of planetary signals.

Stellar Activity Sources



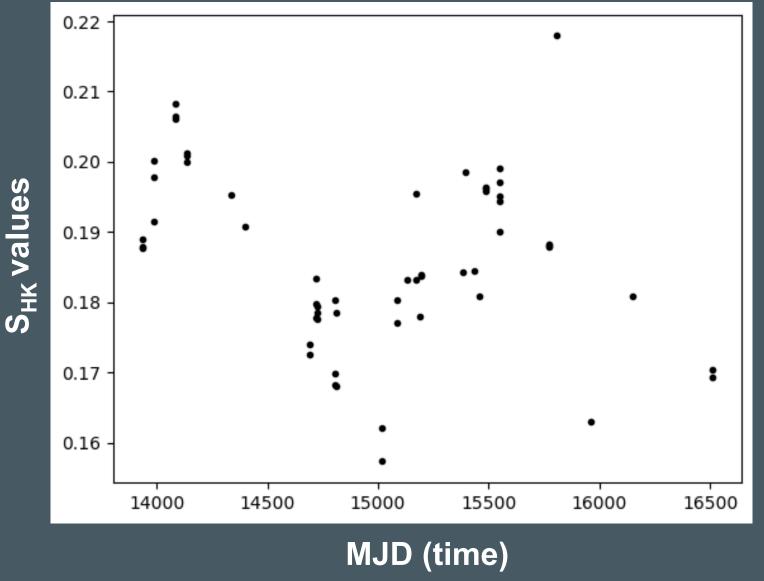
Solution

• Gaussian Process (GP) fits of stellar data.

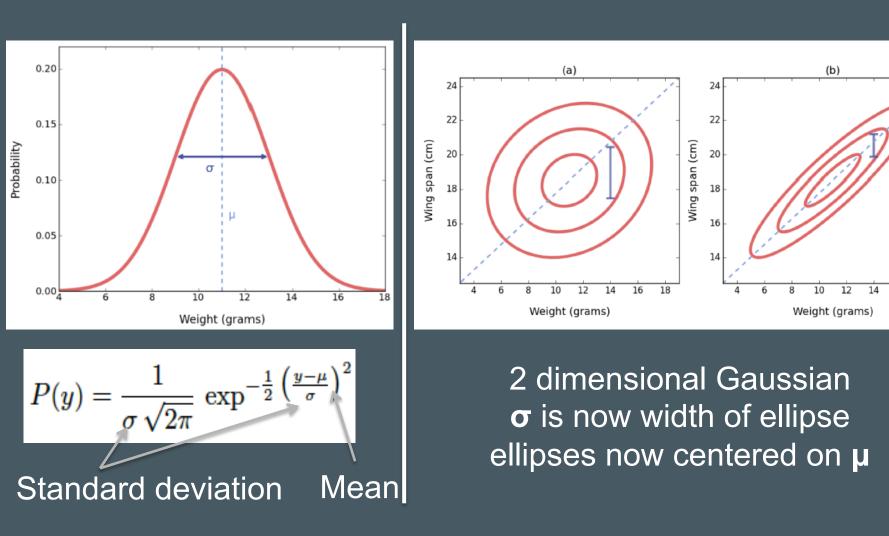
Why?

- GP has proven itself successful in astrophysical and other fields.
- Ex: time series analyses to infer physical properties; exoplanet population; exoplanet detection via RV data.

Example of Measurements



What are Gaussian Processes?



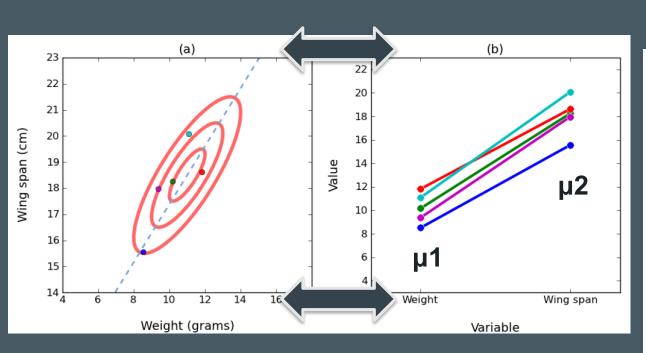
Figures from Raphaëlle Haywood's Ph.D. thesis

Bryce Van Ross, 09/19/17

18

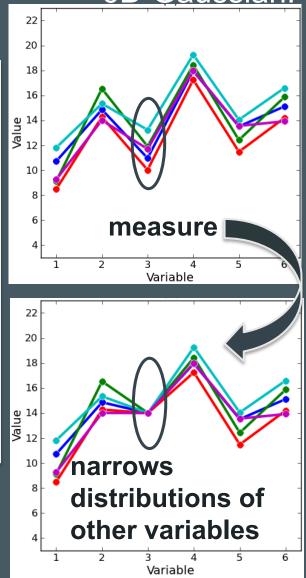
16

What are Gaussian Processes? 6D Gaussian!

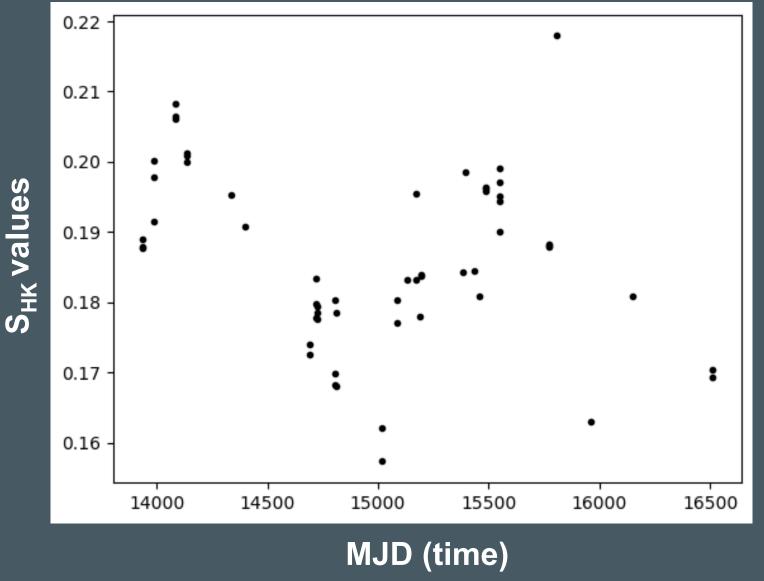


New way to represent 2D Gaussian: 5 samples from joint prior distribution of two variables

Figures from Raphaëlle Haywood's Ph.D. thesis



What are Gaussian Processes?



What are Gaussian Processes?

• Definition:

- Function(s) of covariance amongst variables that change collectively.
- We use GP to measure correlation of our stellar data.
- Different GP's affect the quality of your fits.
 - Difficulty is determining appropriate parameters and models.

Kernels (covariance functions)

$$k_{\text{SE}}(x, x') = \sigma^2 \exp\left(-\frac{(x-x')^2}{2\ell^2}\right)$$

$$k_{\text{Per}}(x, x') = \sigma^2 \exp\left(-\frac{2\sin^2(\pi|x-x'|/p)}{\ell^2}\right)$$

$$k_{\text{RQ}}(x, x') = \sigma^2 \left(1 + \frac{(x-x')^2}{2\alpha\ell^2}\right)^{-\alpha}$$

Photo Credit: David Duvenaud, "The Kernel Cookbook: Advice on Covariance functions"

Hyperparameters (what control kernels)

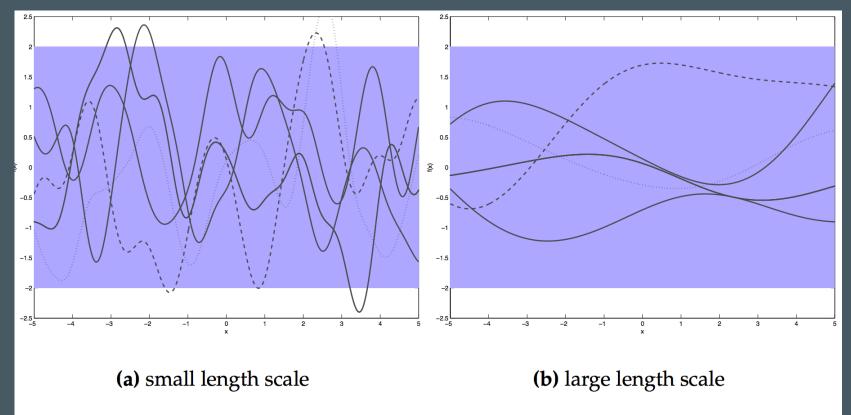


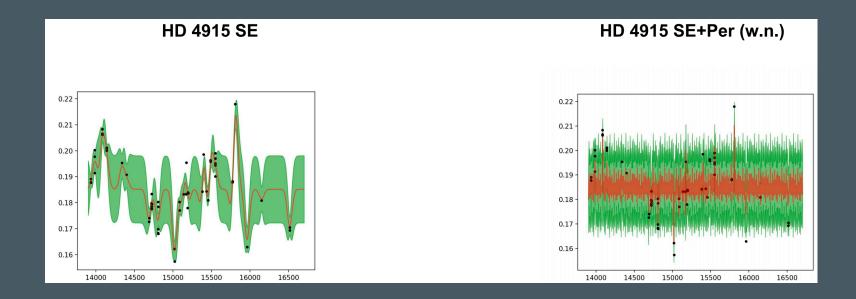
Figure 2.4: Random samples from a Gaussian process prior with squared exponential covariance function. The left panel shows a small SE with small length scale value (0.5), whereas the right panel has a much larger value (3).

Photo Credit: Markus Schneider 's Thesis, "Learning from Demonstration with Gaussian Processes"

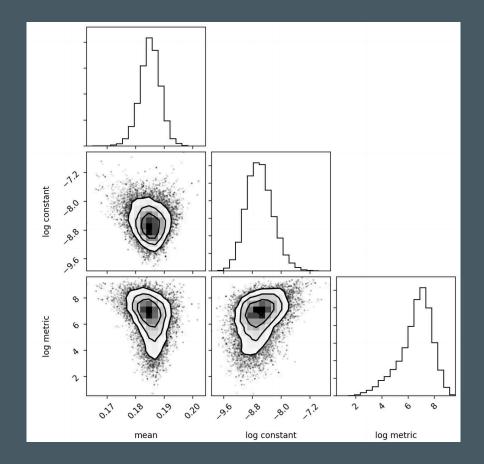
Methods

- Sample S-values (Ca II H and K measurements) of stars from Keck/HIRES.
- Apply GP to fit data and measure correlation.
- Adjust hyperparameters and/or consider alternative combination of kernels, until optimized.

Qualitative GP Fits



Corner Plots

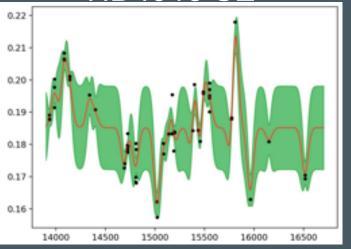


Likelihood

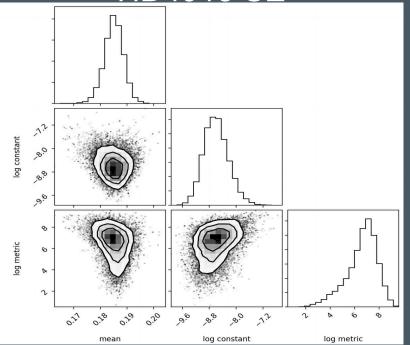
BIC= In(sample size)*parameters+(max log likelihood)

Star, Kernel (White Noise)	Fun Value	BIC	Delta BIC
HD4915, SE	-197.654	-383.179	0
HD4915, SE (White Noise)	-197.654	-379.136	4.043
HD4915, Per	-186.594	-357.016	26.163
HD4915, Per (White Noise)	-187.684	-355.153	28.026
HD4915, SE+Per	-181.964	-339.670	43.509
HD4915, SE+Per (White Noise)	-173.01	-317.719	65.460
HD4915, RQ	-198.388	-380.604	2.575
HD4915, RQ (White Noise)	-198.388	-376.561	6.618
HD4915, SE+Per+RQ	-198.967	-361.547	21.632
HD4915, SE+Per+RQ (White Noise)	-198.927	-357.423	25.755
HD10700, SE	-2677.292	-5334.680	119.253
HD10700, SE (White Noise)	-2706.79	-5387.041	66.892
HD10700, Per	-2492.059	-4957.579	496.354
HD10700, Per (White Noise)	-2593.152	-5153.131	300.803
HD10700, SE+Per	-2677.292	-5314.776	139.157
HD10700, SE+Per (White Noise)	-2677.292	-5308.142	145.792
HD10700, RQ	-2740.236	-5453.933	.000
HD10700, RQ (White Noise)	-2740.236	-5447.299	6.635
HD10700, SE+Per+RQ	-2677.292	-5294.872	159.061
HD10700, SE+Per+RQ (White Noise)	-2752.542	-5438.738	15.196
HD154345, SE	-654.593	-1293.145	49.253
HD154345, SE (White Noise)	-654.593	-1287.798	54.600
HD154345, Per	-536.803	-1052.218	290.180
HD154345, Per (White Noise)	-539.691	-1052.646	959.219
HD154345, SE+Per	-668.098	-1304.113	38.284
HD154345, SE+Per (White Noise)	-654.593	-1271.756	70.641
HD154345, RQ	-681.893	-1342.398	.000
HD154345, RQ (White Noise)	-681.893	-1337.050	5.347
HD154345, SE+Per+RQ	-682.329	-1316.534	25.864
HD154345, SE+Per+RQ (White Noise)	-692.065	-1330.659	11.739

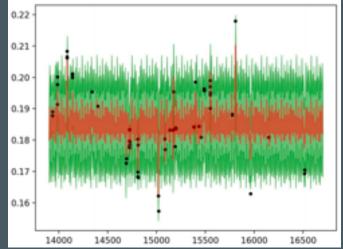
Results HD4915 SE



HD4915 SE



HD4915 SE+Per (w.n.)

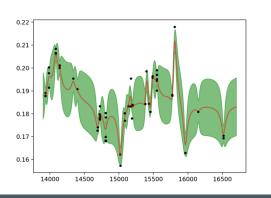


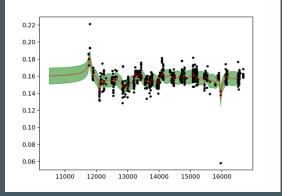
Bayesian Information Criterion (BIC):

In(sample size)*parameters + max log likelihood

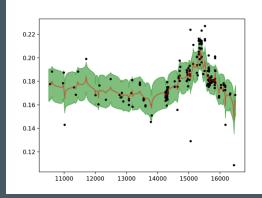
What's the Best Fit?

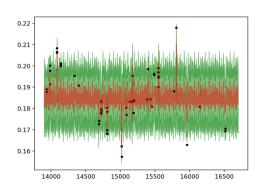
HD4915 RQ

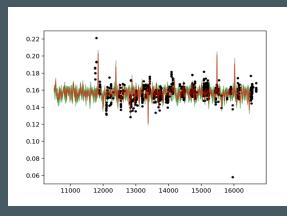


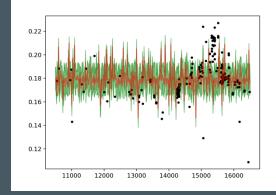


HD154345 RQ









HD154345 Per (w. noise)

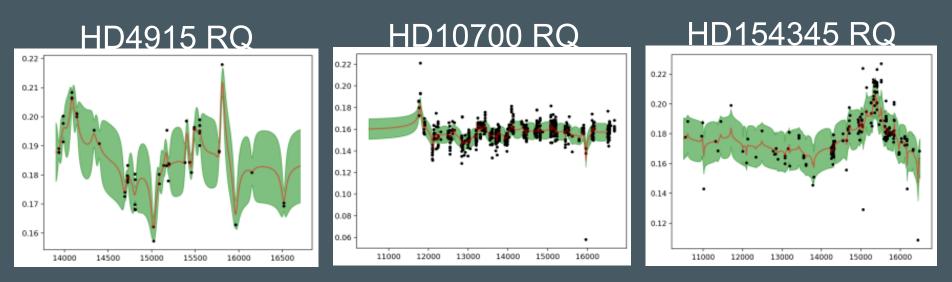
Bryce Van Ross, 09/19/17

HD4915 SE+Per (w. noise)

HD10700 Per

Conclusions Thus Far

- Per and Per(w. noise) fit the data poorly.
- RQ, RQ(w. noise), and SE+Per+RQ(w. noise) are likely the best kernels.
- Hyperparameters need reevaluation, but some are well constrained.



Next Steps

- Can we infer the same results with H-alpha?
- Apply to RV data of same stars
 - Method 1: Subtract our stellar fit from RV model, then fit residuals using Keplerian parameters.
 - Method 2: Simultaneously unite our stellar fit with Keplerian.
 - Interpret Keplerian parameters.
- GP fits to the stellar activity data not well constrained? Maybe need more observations to reliably remove the stellar activity signal, reveal real planetary signals in RVs.

Acknowledgements

Further Questions? Feel free to email me at: <u>bvranros@calstatela.edu</u>

