

From Exoplanets To Exoworlds

Kevin Stevenson May 8th, 2015 <u>Sagan/Michelson F</u>ellows Symposium

Collaborators

- Jacob Bean (UChicago)
- Laura Kreidberg (UChicago)
- Jean-Michel Désert (UC-Boulder)
- Jonathan Fortney (UCSC)
- Michael Line (UCSC)
- Caroline Morley (UCSC)
- Nikku Madhusudhan (Cambridge)
- Adam Showman (LPL)
- Tiffany Kataria (Exeter)

Funding Sources

- Sagan Fellowship
 - Support for this work was provided by NASA through the Sagan Fellowship Program and administered by NExScl.

• HST

 Part of this work was based on observations made with the NASA/ESA Hubble Space Telescope that were obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

• Spitzer

 Part of this work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

Current Questions in Exoplanet Characterization

Have we definitively detected a thermal inversion in the atmosphere of a hot-Jupiter?

Atmospheric chemistry

Atmospheric dynamics

- Knutson et al. (2008) simultaneously measured one secondary eclipse in all four Spitzer/IRAC channels
 - Divided time between channels
 - Observing strategy was suboptimal
- Predicted emission spectrum ≠ measured Spitzer photometry points
- Prototypical exoplanet for atmospheric thermal inversions
 - Spawned numerous investigations to explain the source of purported inversion

HD 209458b – Circa 2014

Diamond-Lowe et al. (2014)

- Reanalysis of 2005 data
 - 4 secondary eclipses
 - State-of-the-art analysis techniques
 - BLISS mapping

HD 209458b – Circa 2014

Diamond-Lowe et al. (2014)

- Reanalysis of 2005 data
 - 4 secondary eclipses
 - State-of-the-art analysis techniques
 - BLISS mapping
- Analysis of previouslyunpublished 2007, 2010 & 2011 data
 - 3.6, 4.5 & 8.0 µm light curves
 - More efficient observing mode

HD 209458b - Dayside Emission Spectrum

- No evidence for an atmospheric thermal inversion in HD 209458b.
- Results confirmed by Evans et al. (2015).
- No definitive detection of thermal inversion in any exoplanet.

Current Questions in Exoplanet Characterization

Have we definitively detected a thermal inversion in the atmosphere of a hot-Jupiter?

Have we definitively detected a carbon-rich atmosphere for a hot-Jupiter?

Atmospheric dynamics

Carbon- vs Oxygen-Rich Planets

- Carbon-rich planet:
 - C/O > 1
 - Low [H₂O]
 - High [CH₄]
- Oxygen-rich planet:
 - C/O ~ 0.55 (Solar)
 - High [H₂O]
 - Low [CH₄]
- Spawned numerous investigations
 - Formation scenarios
 - Classification schemes
 - Diamond planets

Madhusudhan et al. (2011a, 2011b, 2012)

WASP-12b – Carbon-Rich Planet?

<u> Planet</u>

- Mass: 1.39 M_J
- Radius: 0.83 R_J
- Eq. Temperature: 2500 K
- Orbital Period: 1.09 days

Host Star

- Mass: 1.35 M $_{\odot}$
- Radius: 1.57 R $_{\odot}$
- T_{eff}: 6300 K (G0V)
- Distance: 267 pc

Observations

- Published and unpublished data
- Spitzer & HST
- 1.1 10 μm

WASP-12b – Emission Spectrum

- <u>C-Rich</u>: Best fit to available data
- <u>O-Rich</u>: Poor fit assuming thermochemical equilibrium, requires 5x less H₂O and 100x more CO₂ relative to solar composition (physically implausible).
- Isothermal: 2930 K, 7.3×10⁶ times less probable

WASP-12b - Transmission Spectrum

- Observed 6 transits with HST/WFC3
 - 3 transits with G141 (1.2 1.7 μ m)
 - 3 transits with G102 (0.8 1.2 μ m)
- 7σ detection of H₂O at planet terminator

Current Questions in Exoplanet Characterization

Have we definitively detected a thermal inversion in the atmosphere of a hot-Jupiter?

Have we definitively detected a carbon-rich atmosphere for a hot-Jupiter?

What parameters affect the heat redistribution efficiency from dayside to nightside?

Heat Redistribution of Measured Planets

Cooler planets typically exhibit more efficient heat redistribution

Wavelength dependence in heat redistribution OR exoplanet dichotomy?

WASP-43b – White WFC3 Phase Curve

- PC Max. 40 \pm 3 minutes before eclipse
- Asymmetric shape (10σ confidence)
- PC Min. 34 ± 5 minutes after transit

Eclipse Depth: 461 \pm 5 ppm

3.6 & 4.5 µm Spitzer Phase Curves

PRELIMINARY RESULTS

Conclusions

- HD 209458b does not have a thermal inversion at the pressure levels probed by Spitzer.
 - No definitive detection of a thermal inversion in any hot-Jupiter atmosphere to date.
- Carbon-rich status of WASP-12b is debatable.
 - Secondary eclipse photometry favors C-rich scenario.
 - Primary transit spectroscopy favors O-rich scenario.
- WASP-43b HST/WFC3 + Spitzer/IRAC phase curves
 - Heat redistribution efficiency is not strictly T_{eq} dependent.