Probing the Nature of Accretion and Planet Formation in Protoplanetary Disks

Connecting Theory with ALMA Observations

Jacob B. Simon

Southwest Research Institute (SwRI), Boulder, CO

> Collaborators Meredith Hughes Kevin Flaherty Phil Armitage Xuening Bai Eugene Chiang

Sagan Fellows Symposium May 7, 2015

Courtesy: NASA

Disk turbulence is likely tied to angular momentum transport

- Microphysical viscosity is way too small to transport angular momentum.
- Shakura and Sunyaev (1973) suggested turbulent angular momentum transport

MRI turbulence drives accretion...

Hawley (2000)

...and is important for planet formation

Low ionization levels enhance non-ideal magnetohydrodynamic (MHD) effects

Planet formation may prefer locations of low turbulence, such as these dead/damping zones

Constraining theory with observations

and compare to theory

Fitting a turbulent broadening to the line gives a typical turbulent velocity of ~ 0.4 cs

Hughes et al. (2011)

We can examine vertical structure of turbulence using different lines that are only observable at high sensitivity

Meredith Hughes

Will we see the existence of the dead zones or ambipolar damping zones?

Simon et al. 2013b (see also Bai & Stone 2011)

Local simulations: examine small co-rotating disk patch

- Assume Cartesian geometry
- Add appropriate source terms
- Solve equations of MHD
- Shearing periodic boundaries
- Valid if H/R << 1
- Assume gas is isothermal

Center local simulations at several radii

Put it all together!

Simon et al. (2015)

Other observational diagnostics

Simon et al. (2015)

Planet formation processes

The streaming instability

What's going on here?

The streaming instability

Next: run planetesimal formation simulations *including* the effects of turbulence, as constrained by a combination of theory and observations

Conclusions

- I. Differences in turbulent structure of disks should be observable with ALMA
- 2. If MRI turbulence is present in these disks, we should observe a strong increase in turbulent velocity away from the mid-plane.
- 3. The streaming instability is a robust mechanism by which to produce planetesimals
- 4. The inclusion of turbulence in streaming instability simulations will be essential for understanding how planetesimals form.

Extra Slides

So, what do ALMA observations tell us?

Our group (led by Kevin Flaherty) is finding turbulence consistent with weak or no turbulence!

For a system that is accreting at ~ 10⁻⁷ M_☉/yr

Weak turbulence!

Flaherty ... Simon et al. in prep

What does this mean??

Other accretion mechanisms

Self-gravity?

Forgan, Armitage, Simon (2012)

Shi & Chiang (2014)

Other accretion mechanisms

Wind?

Other accretion mechanisms

Some other form of turbulence?

Would expect non-negligible turbulence at large disk heights

Maybe the outer disk just isn't accreting...

Study radial dependence for turbulence!

Kevin Flaherty

Must characterize the turbulence near the mid-plane

Gole, Simon, Armitage (in prep)

Particle trapping in zonal flows (no streaming inst.)

Strong radial density/ pressure gradients in the outer disk regions

Simon & Armitage (2014)

Despite their strength, these "pressure bumps" are not likely to trap small particles.

Simon & Armitage (2014)

Flaherty et al. in prep

We use a minimum-mass solar nebula model and calculate the Ohmic resistivity at all radii and heights

Armitage (2011)

Strong gradient in turbulent velocity towards disk mid-plane

Simon et al., in prep

If we have a vertical magnetic field...

Effect of different disk structures

Rosenfield et al. (2013)

There are new sub-mm observations from which turbulent velocities can be inferred.

Hughes et al. (2011)

Hughes et al. (2011)

Derived an upper limit of ~ 0.1 cs