Origins and Demographics of Super-Earth and Sub-Neptune Size Planets

Leslie Rogers

Hubble Fellow, California Institute of Technology
Future Sagan Fellow, UC Berkeley
Future Assistant Professor, University of Chicago (Fall 2016)
larogers@caltech.edu

In Collaboration with the exoSAMSI BayCEP Working Group

Sagan Fellows Symposium – May 7, 2015

Super-Earth and Sub-Neptune Planets

Sub-Neptune-Size planets are common!

What fraction of planets are rocky (as a function of planet size)?

Kepler-22b

 $(R_p = 2.4 R_{\oplus})$:

Rocky

OR

Volatile Rich?

Planets Detected both Dynamically and in Transit are Valuable!

Full Sample of Planets with Measured M and R

Kepler Planets with RV Follow-Up

Model:

$$\mathbf{f}_{rock}\left(\mathbf{R_{p}},\mathbf{a}
ight) \equiv ext{fraction of planets}$$
 dense enough to be rocky

 $\mathbf{a} \equiv \text{model parameters}$ (to be constrained)

Main Take Away: Most planets larger than 1.6 R_⊕ are not Rocky.

Kepler-22b

 $(R_p = 2.4 R_{\oplus})$:

OR

Volatile Rich?

Super-Earth and Sub-Neptune Planets

"Most 1.6 R⊕ planets are not Rocky," is the first step.

We'd really like to know:

What is f_{rocky}(R_p) in the Habitable Zone?

Rock/non-rocky transition gradual or abrupt?

How does $f_{rocky}(R_p)$ depend on incident flux? Stellar mass?

Figure Credit: NASA/Ames/JPL-Caltech

Upcoming space-based surveys will discover many transiting planets around bright stars!

Many Precision RV Spectrographs Under Development: e.g., SHREK (Keck), SPIRou (CFHT), MAROON-X (Magellan), HPF (HET), CARMENES (Calar Alto), Espresso (VLT), EXPRES, G-CLEF (GMT)

Accumulating a Statistical Sample of Planet M-R

Planet composition distribution wish list:

- What is the typical mass scale for rocky planets?
- For planets with gas envelopes, what is the relationship between planet core mass and envelope mass?
- Is there evidence for distinct planet sub-populations formed through different planet formation pathways?

 How much physical scatter is there in exoplanet compositions?

How well can we hope to constrain the planet composition distribution?

Input Parameters

Output Parameters

50 planets: 40% Relative Uncertainty 250 planets: 10% Relative Uncertainty

Parameterized Model of Planet Mass-Composition Distribution

Apply Hierarchical analysis using

Parameterized Model of Planet Mass-Composition Distribution

Generate simulated sample of planets

Main Take Away Points

- Present:
 - Most planets larger than 1.6 R_⊕ are not Rocky.
- Future Prospects
 - From the accumulating sample of planet M-R measurements we can gain largely empirical constraints on the planet composition distribution
 - e.g., typical mass scale of rocky planets
 - M_{core}-M_{env} relationship of gas-laden planets
 - extent of physical scatter in exoplanet compositions