Ettore Pedretti

Scottish Association for Marine Science (SAMS)

From Imaging Stars to Measuring Waves in Sea Ice: An Interferometrist Tale

Photo credits: P. B Young

www.sams.ac.uk

Collaborators

- J. Wilkinson, British Antarctic Survey
- J. D. Monnier, University of Michigan
- S. Rodwell, Scottish Association for Marine Science
- N. Toberg, University of Cambridge
- B. G. Hagan, Scottish Association for Marine Science
- A. James, Scottish Association for Marine Science
- P. B. Wang , Scottish Association for Marine Science
- N. D. Thureau, University of St Andrews
- W. A. Traub , Jet Propulsion Laboratory

The IOTA Interferometer

SAMS

www.sams.ac.uk

Model-dependent imaging of CH Cyg

Pedretti et al, 2009 MNRAS

Imaging capabilities for the CHARA array

Monnier et al., Science (2007)

Imaging capabilities for the CHARA array

Monnier et al., Science (2007)

CHARA array: longest operational baseline

Observatory	Wavelength λ	Baseline	Angular resolution
	$(\mu { m m})$	(m)	(milli $-$ arcseconds $)$
Hubble Space Telescope	0.5	2.4	43.0
Keck Telescope	1.65	10.0	34.0
CHARA Array	0.5	330.0	0.3
Very Long Baseline Array	10^{4}	$8.6 imes 10^6$	0.24

Pedretti et al. 2009 NewAR

Model-independent imaging of Epsilon Aurigae

Kloppenborg et al., Nature 2010

www.sams.ac.uk

Stars and ice

www.sams.ac.uk

www.sams.ac.uk

 Changes in ice thickness (submarines, UAVs, drilling).

Tuesday, November 20, 2012

- Changes in ice thickness (submarines, UAVs, drilling).
- Changes in ice dynamics (less pressure ridges, more forcing).

Tuesday, November 20, 2012

- Changes in ice thickness (submarines, UAVs, drilling).
- Changes in ice dynamics (less pressure ridges, more forcing).
- Changes in first-year / multi-year fraction since 1999.

- Changes in ice thickness (submarines, UAVs, drilling).
- Changes in ice dynamics (less pressure ridges, more forcing).
- Changes in first-year / multi-year fraction since 1999.
- Changes in ice type (enhanced breakup, larger waves in summer).

- Changes in ice thickness (submarines, UAVs, drilling).
- Changes in ice dynamics (less pressure ridges, more forcing).
- Changes in first-year / multi-year fraction since 1999.
- Changes in ice type (enhanced breakup, larger waves in summer).
- Changes in ice extent.

SAMS

Changes in ice extent

SAMS

www.sams.ac.uk

Comparisons of the model estimates and observations

Comparisons of the model estimates and observations a Models show

Models show declining Arctic ice cover over the observational record, none show trends comparable to observations.

www.sams.ac.uk

SAMS

Comparisons of the model estimates and observations Models show

Models show declining Arctic ice cover over the observational record, none show trends comparable to observations.

Models

underestimate the loss of sea ice. This suggests that forcing and/or feedbacks are not being represented correctly.

SAMS

How the amplitude of ocean waves with period ranging from 13 to 35 s is affected by 1670 km of sea-ice terrain.

How the amplitude of ocean waves with period ranging from 13 to 35 s is affected by 1670 km of sea-ice terrain.

 Shorter-period swells require smaller amplitudes to break the ice.

How the amplitude of ocean waves with period ranging from 13 to 35 s is affected by 1670 km of sea-ice terrain.

- Shorter-period swells require smaller amplitudes to break the ice.
- Longer-period swells reach deeper into the pack ice and require larger amplitudes to break the ice.

Ice, Ocean and Atmosphere Interactions in the Arctic Marginal Ice Zone

www.sams.ac.uk

Ice, Ocean and Atmosphere Interactions in the Arctic Marginal Ice Zone

 Project funded by a Office of Naval Research (ONR) grant.

www.sams.ac.uk

Ice, Ocean and Atmosphere Interactions in the Arctic Marginal Ice Zone

- Project funded by a Office of Naval Research (ONR) grant.
- 25 to 29 wave buoys / ice-mass balance (IMB) buoys to be deployed + 5 automatic weather stations (AWS).

The experiment

www.sams.ac.uk

The experiment

SAMS

www.sams.ac.uk

Wavelet analysis of the sea-ice waves

Wavelet transform normalised to wave height

www.sams.ac.uk

Wave height from wavelets

SAMS

www.sams.ac.uk

www.sams.ac.uk

Changing scientific discipline is possible and can be "refreshing".

www.sams.ac.uk

- Changing scientific discipline is possible and can be "refreshing".
- Potential of bringing new techniques to a different field and conversely back to your own field.

- Changing scientific discipline is possible and can be "refreshing".
- Potential of bringing new techniques to a different field and conversely back to your own field.
- Changing field abruptly can be traumatic for your career. No track record, plenty to learn, difficult to get grants. The risk is becoming a "support" scientist.

Sea ice on Europa?

Credits:NASA/JPL

www.sams.ac.uk

Sea ice on Europa?

Credits:NASA/JPL

www.sams.ac.uk