

Exozodi dust emission measured with the nulling interferometers (KIN and LBTI)

Exozodis

- Debris disk: dust generated by collisions in asteroid and Kuiper belts and by comet outgassing. The inner component (<5AU) is called zodiacal cloud.
- Extra-solar analogs are common, but due to observational limitations we know a lot more about outer, colder dust (exo-Kuipers) than about debris dust in the planet formation zone.
- Zodiacal dust reflects planetary system formation history and current dynamical state.
- But, could be a major hindrance to the direct detection of exo-Earths (noise + confusion).

Outer Solar System ...

Inner Solar System ...

Exozodis are difficult to detect

- The dust emission is faint and close to the star.
- Unresolved photometry is the most common method.
- Even with infinite photometric accuracy, limited to ~1% best case relative photometry by ability to predict the stellar MIR flux (~300 zodi, 1σ).

Spitzer/IRS – Beichman et al. 2006

Interferometry helps

- Spatially separate the signal from the star and the surrounding disk.
- 2 main methods:
 - NIR high-accuracy visibility (CHARA/FLOUR, VLTI/PIONIER).
 - MIR Nulling (MMT/BLINC, KIN, LBTI).
- Free of modeling assumptions on the stellar spectrum.

2σ stellar model uncertaintv

The Keck Interferometer Nuller

- Spectral band: $8 13 \mu m (R \sim 25)$.
- Sensitivity: 1.5 Jy @ 10 μ m
- Resolution (λ /2B) = 10 mas @ 8.5 μ m
- FOV: 0.1 AU 4 AU @ 10 pc → sensitive to inner dust.
- Double-nuller architecture:
 - DC signal → AC signal. Allows accurate visibility measurements in spite of large thermal background.
- σ (Leak) = 0.003 (typical) corresponds to σ (Vis) = 0.006 (0.6%, much better than standard MIR interferometry!
- Translates to σ (zodi) = 160.

Note: the unit "zodi" refers to a scaled zodiacal-twin disk (see discussion of units in Roberge et al 2012).

Instrument details: Colavita 2009. Theory: Serabyn 2012

KIN exozodi surveys

- Three NASA Key Science projects (2008-2009):
 - 23 mostly FGK stars with no previously known dust (PI: Serabyn 2008-2009)
 - 19 mostly early type stars with previously known cold dust (PIs: Hinz & Kuchner 2008-2009)
- One additional PI program (Mennesson 2010-2011):
 - 6 mostly early type stars suspected to have very hot/ close-in dust (from the Absil et al. survey at CHARA).

Analysis of stars with a priori no dust

(Millan-Gabet, Serabyn, Mennesson et al. 2011)

- 23 FGK stars.
- Only one shows dust at marginal detection level (Altair but later, NIR excess also detected by CHARA).
- Mean 3 σ upper limit = 570 zodi.
- Population analysis: 3 σ upper limit for the class = 150 zodi.

600 +/- 200 solar zodi

Analysis of stars with previously known dust

(hot and/or cold, Mennesson, Millan-Gabet et al. work in progress)

- 14 single stars with previously known cold (far IR) excess:
 - 4 detected by KIN: Fomalhaut, ξ Lep, γ Oph and η CrV.
 - (+ 5 more marginal detections)
- 12 single stars with known hot (NIR) excess (CHARA/FLUOR):
 - stars with only hot excess, do not tend to show KIN excess 3 of 8 and with only very weak excess.
- Complete sample: 40 single stars, look for trends with:
 - Spectral type: more KIN detections for A stars. disk difference or age effect?
 - Presence of cold/hot dust: hot dust appears to have physically different origin.
- Produce "top-10" list of cleanest stars (<100 zodi), as input to the next survey.

Conclusions so far

- We are learning very interesting things with NIR and MIR interferometry.
- The sensitivity of current exozodi finders, 300-1000 zodi $3\,\sigma$, is not adequate to assess whether exozodis in the 10–100 zodi range (problematic for direct exo-Earth detection & characterization missions from space) are common or not.
- Need dedicated effort with x10 or more improvement.

The Large Binocular Telescope Interferometer (LBTI)

- PI: Phil Hinz, U. Arizona.
- NASA-funded instrument for the LBT:
 - 8-13 μ m / 3-5 μ m.
 - Nulling, Fizeau and aperture masking interferometry.
- Currently in commissioning.
- Expected ultimate nulling performance: noise equivalent 10 zodi (3 σ).

Exozodi key science survey:

- 50-100 nearby Sun-like stars.
- Competitively selected science team.
- Reconnaissance of specific exo-Earth detection targets + statistical constraints on the exozodi "luminosity function".

Roberge et al. ExoPAG report 2012

LBTI main features

- Sensitivity: two 8.4 m telescopes.
- Resolution: Bmax = 22.7 m.
- Leverages secondary deformable mirror to achieve diffraction limited wavefronts.
- Relatively simple beam train + cooled optics beam combiner, allows high sensitivity in the MIR.

Status

10 μm Fizeau fringes.

Open-loop (seeing limited) nulling (Sep 2012).

backup

Discussion: Comparison with Spitzer/IRS

- Different modelling aproaches, can the results in terms of nzodis be compared? → put Spitzer/IRS & KIN results on equal footing.
- Spitzer/IRS measures: Fdust/Fstar.
- KIN measures L ~ f * Fdust/Fstar; f is the fraction of light allowed to pass through the instantaneous fringe pattern at null.
- f tends to be ~ 0.4.
- One can derive from the KIN Leak an equivalent Spitzer/IRS measurement:
 - Fdust/Fstar = L/f ~ 2.5 * L
 - Error in this quantity: $\sigma(\text{Fdust/Fstar}) = f * \sigma(L) \sim 2.5 * \sigma(L)$.
 - Typical σ (L) = 0.003 → σ (Fdust/Fstar) = 0.0075.
 - Compare with Spitzer/IRS errors (0.01 best case).
 - Not a HUGE difference. Expected improvement factor depends on precise errors in each case (range ~ 30% to x2).
- Do it exactly for the 8 stars in common between KIN & IRS surveys ...

Name	IRS (Lawler 2009)				KIN			
	Fdust/F*	3σ max Fdust/F*	3σ max Ldust/L* X10^-5	3σ max Nzodis	Fdust/F*	3σ max Fdust/F*	3σ max Ldust/L* X10^-5	3 omax Nzodis
47 Uma	-0.02+-0.012	0.036	11	1000	-0.003+-0.015	0.044	13	1337
bet Com	0.014+-0.010	0.044	8	800	0.013+-0.009	0.039	11	1089
gam Lep	0.001+-0.01	0.031	8	800	-0.004+-0.008	0.024	6	599
iot Psc	-0.007+-0.014	0.042	10	1000	-0.0003+-0.009	0.027	7	675
kx Lib	0.002+-0.010	0.032	16	1600	0.010+-0.008	0.035	19	1951
tau Boo	0.011+-0.014	0.052	10	1000	0.008+-0.008	0.032	8	773
the Per	0.003+-0.01	0.033	8	800	0.006+-0.008	0.032	8	802
ups And	-0.003+-0.010	0.030	10	1000	-0.004+-0.008	0.023	6	613

$$Ldust/L^* = 3.5x10^{-3} \times \left(\frac{T^*}{5600K}\right) \times \frac{Fdust}{F^*}$$
 Here 1-zodi is Ldust/L* = 10^-7

- The different modelling approaches do in fact give similar results.
- KIN/Spitzer-IRS limits not hugely different. On a star by star basis, which provides tighter limits just depends on the errors in the basic measurement.
- Note: IRS errors do not include a possible systematic in the stellar flux, to which KIN is immune.

