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Atmospheric Timescales 

the equations quasi-empirical damping terms (e.g., a verti-
cal diffusion to represent turbulent kinetic-energy losses by
small-scale shear instabilities and breaking waves). A diffi-
culty is that such prescriptions, while physically motivated,
are often non-rigorous and the extent to which they can
be extrapolated to other planetary environments is unclear.
Perhaps for this reason, models of hot Jupiters published
to date do not include such parameterizations of frictional
processes (although they all include small-scale viscosity
for numerical reasons).9 Nevertheless, Goodman (2009)
has highlighted the possible importance that such processes
could play in the hot-Jupiter context, and future models of
hot Jupiters will surely explore the possible effect that fric-
tion may have on the mean states.

Solar-System planets offer interesting lessons on the
role of friction. Despite absorbing a greater solar flux
than any other thick atmosphere in our Solar System,
Earth’s winds are relatively slow, with a mean wind speed
of ∼ 20 m sec−1. In contrast, Neptune absorbs a solar
flux only 0.1% as large, but has wind speeds reaching
400 m sec−1. Presumably, Neptune can achieve such fast
winds despite its weak radiative forcing because its fric-
tional damping is extremely weak. Qualitatively, this makes
sense because Neptune lacks a surface, which is a primary
source of frictional drag on Earth. More puzzling is the fact
that Neptune has significantly stronger winds than Jupiter
(Table 1) despite absorbing only 4% the solar flux absorbed
by Jupiter. Possible explanations are that Jupiter experi-
ences greater frictional damping than Neptune or that it has
equilibrated to a state that has relatively slow wind speeds
despite weak damping. This is not well understood and
argues for humility in efforts to model the circulations of
exoplanets.

3.2. Timescale arguments for the coupled radiation-
dynamics problem

The atmospheric circulation represents a coupled radiation-
hydrodynamics problem. The circulation advects the tem-
perature field and thereby influences the radiation field; in
turn, the radiation field (along with atmospheric opacities
and surface conditions) determines the atmospheric heating
and cooling rates that drive the circulation. Rigorously at-
tacking this problem requires coupled treatment of both ra-
diation and dynamics. However, crude insight into the ther-
mal response of an atmosphere can be obtained with sim-
ple timescale arguments. Suppose τadvect is an advection
time (e.g., the characteristic time for air to advect across a
hemisphere) and τrad is the radiative time (i.e., the charac-
teristic time for radiation to induce large fractional entropy
changes). When τrad � τadvect, we expect temperature to
deviate only slightly from the (spatially varying) radiative
equilibrium temperature structure. Because the radiative-

9Note that a statistically steady (or quasi-steady) state can still occur in
such a case; this requires the atmosphere to self-adjust so that the rates
of generation of available potential energy and its conversion to kinetic
energy become small.

equilibrium temperature typically varies greatly from day-
side to nightside (or from equator to pole), this implies that
such a planet would exhibit large fractional temperature
contrasts. On the other hand, when τrad � τadvect, dynam-
ical transport dominates and air will tend to homogenize its
entropy, implying that lateral temperature contrasts should
be modest.

In estimating the advection time, one must distinguish
north-south from east-west advection; east-west advection
(relative to the pattern of stellar insolation) will often be
dominated by the planetary rotation. For synchronously ro-
tating planets, a characteristic horizontal advection time is

τadvect ∼
a

U
, (18)

where U is a characteristic horizontal wind speed. A simi-
larly crude estimate of the radiative time can be obtained by
considering a layer of pressure thickness ∆p that is slightly
out of radiative equilibrium and radiates to space as a black-
body. If the radiative equilibrium temperature is Trad and
the actual temperature is Trad + ∆T , with ∆T � Trad,
then the net flux radiated to space is 4σT

3
rad∆T and the

radiative timescale is (Showman and Guillot 2002; James
1994, pp. 65-66)

τrad ∼
∆p

g

cp

4σT 3
. (19)

In deep, optically thick atmospheres where the radiative
transport is diffusive, a more appropriate estimate might be
a diffusion time, crudely given by τrad ∼ H

2
/D, where H

is the vertical height of a thermal perturbation and D is the
radiative diffusivity.

Showman et al. (2008b) estimated advective and radia-
tive time constants for Solar-System planets and found that,
as expected, planets with τrad � τadvect generally have
small horizontal temperature contrasts and vice versa.

For hot Jupiters, most models suggest peak wind speeds
of ∼1–3 km sec−1 (§4.3), implying advection times of
∼105 sec based on the peak speed. Eq. (19) would then
suggest that τrad � τadvect at p � 1 bar whereas
τrad � τadvect at p � 1 bar. Thus, one might crudely ex-
pect large day-night temperature differences at low pressure
and small day-night temperature difference at high pres-
sure, with the transition occurring at ∼ 0.1–1 bar. These
estimates are generally consistent with the observational
inference of Barman (2008) and 3D numerical simulations
(e.g., Showman et al. 2009; Dobbs-Dixon and Lin 2008)
of hot Jupiters—though some uncertainties still exist with
modeling and interpretation.

For synchronously rotating terrestrial planets in the hab-
itable zones of M dwarfs, a mean wind speed of 20 m sec−1

(typical for terrestrial planets in our Solar System; see Ta-
ble 1) would imply an advection time of ∼3 Earth days.
For a temperature of 300 K, Eq. (19) would then imply that
τrad is much smaller (greater) than τadvect when the sur-
face pressure is much less (greater) than ∼0.2 bars. This
argument suggests that synchronously rotating terrestrial
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tigate the atmospheric circulation of hot Jupiters. Cho et al.
(2003, 2008) performed global numerical simulations of hot
Jupiters on circular orbits using the one-layer equivalent
barotropic equations (a one-layer model that is mathemat-
ically similar to the shallow-water equations described in
§ 2.3). They initialized the simulations with small-scale bal-
anced turbulence and forced them with a large-scale deflec-
tion of the surface to provide a crude representation of the
pressure effects of the day-night heating gradient. However,
no explicit heating/cooling was included. Together, these
effects led to the production of several broad, meandering
jets and drifting polar vortices (Fig. 8). The mean wind
speed in the final state is to a large degree determined by
the mean speed of the initial turbulence, which ranged from
100–800 m sec−1 in their models. At the large (∼planetary-
scale) deformation radius relevant to hot Jupiters, the equa-
torial jet in the final state can flow either eastward or west-
ward depending on the initial condition and other details.
The simulations exhibit significant time variability that, if
present on hot Jupiters, would lead to detectable orbit-to-
orbit variability in light curves and secondary eclipse depths
(Cho et al. 2003; Rauscher et al. 2007, 2008).

Langton and Laughlin (2007) performed global, 2D sim-
ulations of hot Jupiters on circular orbits using the shallow-
water equations with a mass source on the dayside and
mass sink on the nightside to parameterize the effects of
dayside heating and nightside cooling. When the obliq-
uity is assumed zero and the mass sources/sinks are suffi-
ciently large, their forced flows quickly reach a steady state
with wind speeds of ∼ 1 km sec−1 and order-unity lateral
variations in the thickness of the shallow-water layer. On
the other hand, Langton and Laughlin (2008a) numerically
solved the 2D fully compressible equations for the horizon-
tal velocity and temperature of hot Jupiters on eccentric or-
bits and obtained very turbulent, time-varying flows. Ap-
parently, in this case, the large-scale heating patterns pro-
duced hemisphere-scale vortices that were dynamically un-
stable, leading to the breakdown of these eddies into small-
scale turbulence.

Several authors have also performed 3D numerical sim-
ulations of hot Jupiters. Showman and Guillot (2002),
Cooper and Showman (2005, 2006), Showman et al.
(2008a), and Menou and Rauscher (2009) performed global
simulations with the 3D primitive equations where the day-
side heating and nightside cooling was parameterized with a
Newtonian heating/cooling scheme, which relaxes the tem-
peratures toward a prescribed radiative-equilibrium tem-
perature profile (hot on the dayside, cold on the nightside)
over a prescribed radiative timescale. Dobbs-Dixon and Lin
(2008) performed simulations with the fully compressible
equations in a limited-area domain, consisting of the equa-
torial and mid-latitudes but with the poles cut off. Like the
studies listed above, they also adopted a simplified method
for forcing their flow, in this case using a radiative diffusion
scheme. Showman et al. (2009) coupled their global 3D
dynamical solver to a state-of-the-art, non-gray, cloud-free
radiative transfer scheme with opacities calculated assum-

ing local chemical equilibrium (Figs. 9 and 10). The above
models models all generally obtain wind structures with
∼ 1–3 broad jets with speeds of ∼ 1–4 km sec−1.

Despite the diversity in modeling approaches, the studies
described above agree in several key areas.

• First, most of the above studies generally produce
peak wind speeds similar to within a factor of 2–
3, in the range of one to several km sec−1.24 This
similarity is not a coincidence but results from the
force balances that occur for a global-scale flow in
the presence of large fractional temperature differ-
ences. Consider the longitudinal force balance at the
equator, for example, and suppose the day-night heat-
ing gradient produces a day-night temperature dif-
ference ∆Thoriz that extends vertically over a range
of log-pressures ∆ ln p. This temperature difference
causes a day-night horizontal pressure-gradient ac-
celeration which, to order-of-magnitude, can be writ-
ten R∆Thoriz∆ ln p/a, where a is the planetary ra-
dius. At high latitudes, this could be balanced by the
Coriolis force arising from a north-south flow, but the
horizontal Coriolis force is zero at the equator. At the
equator, such a force instead tends to cause accelera-
tion of the flow in the east-west direction. Balancing
the pressure-gradient acceleration by v·∇v, which to
order-of-magnitude is U2/a for a global-scale flow,
we have

U ∼
�

R∆Thoriz∆ ln p (48)

This should be interpreted as the characteristic vari-
ation in zonal wind speed along the equator. For
R = 3700 J kg−1 K−1, ∆Thoriz ∼ 400 K, and
∆ ln p ∼ 3 (appropriate to a temperature difference
extending vertically over three scale heights), this
yields U ∼ 2 km sec−1.
Likewise, consider the latitudinal force balance in
the mid-latitudes. To order-of-magnitude, the lati-
tudinal pressure-gradient acceleration is again given
by R∆Thoriz∆ ln p/a, where here ∆Thoriz is the lat-
itudinal temperature contrast (e.g., from equator to
pole) that extends vertically over ∆ ln p. If Ro � 1,
this is balanced by the advective acceleration U2/a,
whereas if Ro � 1, it would instead be balanced by
the Coriolis acceleration fU , where f is the Coriolis
parameter (§3.3). The former case recovers Eq. (48),
whereas the latter case yields

U ∼ R∆Thoriz∆ ln p

fa
(49)

Here, U is properly interpreted as the characteristic
difference in horizontal wind speed vertically across
∆ ln p. Inserting R = 3700 J kg−1 K−1, ∆Thoriz ∼

24In intercomparing studies, one must be careful to distinguish mean versus
peak speeds and, in the case of 3D models, the pressure level at which
those speeds are quoted; such quantities can differ by a factor of several in
a single model.
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Figure 6. Final 3.6 µm photometry after correcting for in-
trapixel sensitivity variations and stellar activity (black filled cir-
cles), binned into four minute intervals. The best-fit phase, transit,
and eclipse curves are overplotted as a red line. The lower panel
shows the same data as the upper panel, but with an expanded y
axis for a better view of the phase curve.

local maximum just before the secondary eclipse, around
the same time where we would expect to see a maxi-
mum in our best-fit phase curve. We therefore conclude
that the quadratic fit is degenerate with our phase curve
function in this bandpass and opt to limit the quadratic
coefficient in our subsequent fits to positive values (i.e.,
a linear function or a local flux minimum) in order to
avoid this degeneracy and ensure good agreement with
our visible-light spot models. Our best-fit solution in this
band is very close to linear and indicates that the star
increased in brightness by 0.262% ± 0.016% during our
observations (see Table 1, in good agreement with our
prediction of 0.1%− 0.4% from the visible-light photom-
etry.

3. RESULTS

We fit the trimmed data and calculate uncertainties
simultaneously for the transit, secondary eclipses, phase
curve, stellar activity, and intrapixel sensitivity cor-
rections using a Markov Chain Monte Carlo (MCMC)
method (see, for example Ford 2005; Winn et al. 2007b)
with a total of 105 steps and either 16 (3.6 µm) or
15 (4.5 µm) free parameters. These parameters in-
clude: the four phase function coefficients c1 − c4, a/R!,
i, RP /R!, transit time, two secondary eclipse depths,
two secondary eclipse times, either a linear (4.5 µm) or
quadratic (3.6 µm) function of time to account for stel-
lar variability, and two noise parameters discussed be-
low. We plot the normalized time series after the best-fit
intrapixel sensitivity variations and stellar trends have
been removed in Fig. 6 and 7.
We find that there is still some remaining time-

correlated noise in the residuals from our best-fit solu-
tion (Fig. 5); we account for this time correlation by
implementing a wavelet-based MCMC fit as described
in Carter & Winn (2009) and compare the results of
this fit to the standard χ2-based methods described in
Ford (2005) and Winn et al. (2007b). For the standard
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Figure 7. Final 4.5 µm photometry after correcting for intrapixel
sensitivity variations and stellar activity (black filled circles); see
Fig. 6 for a complete description.

MCMC fit, which assumes that the uncertainties on in-
dividual points are Gaussian and time-independent, we
set the per-point uncertainty equal to the value needed to
produce a reduced χ2 equal to one for the best-fit solution
(0.333% at 3.6 µm and 0.466% at 4.5 µm). In our wavelet
MCMC we maximize the likelihood function instead of
minimizing χ2, which allows us to fit for the white (σw)
and red (σr) noise contributions to the per-point uncer-
tainties. The wavelet transform routine requires our data
to have a length equal to a power of two, which we achieve
by subdividing each phase curve into thirteen segments
of equal length and zero-padding by either 6% (3.6 µm)
or 3% (4.5 µm). We prefer zero-padding over trimming
as it allows us to include all available data in our fits,
and we find that this approach has a negligible effect on
our best-fit noise parameters.
We initialize each chain at a position determined by

randomly perturbing the best-fit parameters from a
Levenberg-Marquardt minimization. After running the
chain, we search for the point where the χ2 value first
falls below the median of all the χ2 values in the chain
(i.e. where the code had first found the optimal fit), and
discard all steps up to that point. For the wavelet MCMC
we perform a similar trim where the likelihood first rises
above the median value. We set our best-fit parameters
equal to the median of each distribution and calculate
the corresponding uncertainties as the symmetric range
about the median containing 68% of the points in the
distribution. The distribution of values was very close
to symmetric for all parameters, and there did not ap-
pear to be any detectible correlations between variables
aside from i and a/R!. Our wavelet analysis produces
modestly higher uncertainties for most parameters, with
the greatest increases in the planet-star radius ratio and
secondary eclipse depth errors, which were a factor of
two larger than in the standard Gaussian χ2 fits. We list
the best-fit parameters and corresponding wavelet-based
uncertainties in Table 1.
For both fits the standard deviation of our best-fit

residuals is a factor of 1.12 higher than the predicted

3.6 µm
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Figure 6. Final 3.6 µm photometry after correcting for in-
trapixel sensitivity variations and stellar activity (black filled cir-
cles), binned into four minute intervals. The best-fit phase, transit,
and eclipse curves are overplotted as a red line. The lower panel
shows the same data as the upper panel, but with an expanded y
axis for a better view of the phase curve.

local maximum just before the secondary eclipse, around
the same time where we would expect to see a maxi-
mum in our best-fit phase curve. We therefore conclude
that the quadratic fit is degenerate with our phase curve
function in this bandpass and opt to limit the quadratic
coefficient in our subsequent fits to positive values (i.e.,
a linear function or a local flux minimum) in order to
avoid this degeneracy and ensure good agreement with
our visible-light spot models. Our best-fit solution in this
band is very close to linear and indicates that the star
increased in brightness by 0.262% ± 0.016% during our
observations (see Table 1, in good agreement with our
prediction of 0.1%− 0.4% from the visible-light photom-
etry.

3. RESULTS

We fit the trimmed data and calculate uncertainties
simultaneously for the transit, secondary eclipses, phase
curve, stellar activity, and intrapixel sensitivity cor-
rections using a Markov Chain Monte Carlo (MCMC)
method (see, for example Ford 2005; Winn et al. 2007b)
with a total of 105 steps and either 16 (3.6 µm) or
15 (4.5 µm) free parameters. These parameters in-
clude: the four phase function coefficients c1 − c4, a/R!,
i, RP /R!, transit time, two secondary eclipse depths,
two secondary eclipse times, either a linear (4.5 µm) or
quadratic (3.6 µm) function of time to account for stel-
lar variability, and two noise parameters discussed be-
low. We plot the normalized time series after the best-fit
intrapixel sensitivity variations and stellar trends have
been removed in Fig. 6 and 7.
We find that there is still some remaining time-

correlated noise in the residuals from our best-fit solu-
tion (Fig. 5); we account for this time correlation by
implementing a wavelet-based MCMC fit as described
in Carter & Winn (2009) and compare the results of
this fit to the standard χ2-based methods described in
Ford (2005) and Winn et al. (2007b). For the standard
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Figure 7. Final 4.5 µm photometry after correcting for intrapixel
sensitivity variations and stellar activity (black filled circles); see
Fig. 6 for a complete description.

MCMC fit, which assumes that the uncertainties on in-
dividual points are Gaussian and time-independent, we
set the per-point uncertainty equal to the value needed to
produce a reduced χ2 equal to one for the best-fit solution
(0.333% at 3.6 µm and 0.466% at 4.5 µm). In our wavelet
MCMC we maximize the likelihood function instead of
minimizing χ2, which allows us to fit for the white (σw)
and red (σr) noise contributions to the per-point uncer-
tainties. The wavelet transform routine requires our data
to have a length equal to a power of two, which we achieve
by subdividing each phase curve into thirteen segments
of equal length and zero-padding by either 6% (3.6 µm)
or 3% (4.5 µm). We prefer zero-padding over trimming
as it allows us to include all available data in our fits,
and we find that this approach has a negligible effect on
our best-fit noise parameters.
We initialize each chain at a position determined by

randomly perturbing the best-fit parameters from a
Levenberg-Marquardt minimization. After running the
chain, we search for the point where the χ2 value first
falls below the median of all the χ2 values in the chain
(i.e. where the code had first found the optimal fit), and
discard all steps up to that point. For the wavelet MCMC
we perform a similar trim where the likelihood first rises
above the median value. We set our best-fit parameters
equal to the median of each distribution and calculate
the corresponding uncertainties as the symmetric range
about the median containing 68% of the points in the
distribution. The distribution of values was very close
to symmetric for all parameters, and there did not ap-
pear to be any detectible correlations between variables
aside from i and a/R!. Our wavelet analysis produces
modestly higher uncertainties for most parameters, with
the greatest increases in the planet-star radius ratio and
secondary eclipse depth errors, which were a factor of
two larger than in the standard Gaussian χ2 fits. We list
the best-fit parameters and corresponding wavelet-based
uncertainties in Table 1.
For both fits the standard deviation of our best-fit

residuals is a factor of 1.12 higher than the predicted

3.6 µm
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Figure 6. Final 3.6 µm photometry after correcting for in-
trapixel sensitivity variations and stellar activity (black filled cir-
cles), binned into four minute intervals. The best-fit phase, transit,
and eclipse curves are overplotted as a red line. The lower panel
shows the same data as the upper panel, but with an expanded y
axis for a better view of the phase curve.

local maximum just before the secondary eclipse, around
the same time where we would expect to see a maxi-
mum in our best-fit phase curve. We therefore conclude
that the quadratic fit is degenerate with our phase curve
function in this bandpass and opt to limit the quadratic
coefficient in our subsequent fits to positive values (i.e.,
a linear function or a local flux minimum) in order to
avoid this degeneracy and ensure good agreement with
our visible-light spot models. Our best-fit solution in this
band is very close to linear and indicates that the star
increased in brightness by 0.262% ± 0.016% during our
observations (see Table 1, in good agreement with our
prediction of 0.1%− 0.4% from the visible-light photom-
etry.

3. RESULTS

We fit the trimmed data and calculate uncertainties
simultaneously for the transit, secondary eclipses, phase
curve, stellar activity, and intrapixel sensitivity cor-
rections using a Markov Chain Monte Carlo (MCMC)
method (see, for example Ford 2005; Winn et al. 2007b)
with a total of 105 steps and either 16 (3.6 µm) or
15 (4.5 µm) free parameters. These parameters in-
clude: the four phase function coefficients c1 − c4, a/R!,
i, RP /R!, transit time, two secondary eclipse depths,
two secondary eclipse times, either a linear (4.5 µm) or
quadratic (3.6 µm) function of time to account for stel-
lar variability, and two noise parameters discussed be-
low. We plot the normalized time series after the best-fit
intrapixel sensitivity variations and stellar trends have
been removed in Fig. 6 and 7.
We find that there is still some remaining time-

correlated noise in the residuals from our best-fit solu-
tion (Fig. 5); we account for this time correlation by
implementing a wavelet-based MCMC fit as described
in Carter & Winn (2009) and compare the results of
this fit to the standard χ2-based methods described in
Ford (2005) and Winn et al. (2007b). For the standard
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Figure 7. Final 4.5 µm photometry after correcting for intrapixel
sensitivity variations and stellar activity (black filled circles); see
Fig. 6 for a complete description.

MCMC fit, which assumes that the uncertainties on in-
dividual points are Gaussian and time-independent, we
set the per-point uncertainty equal to the value needed to
produce a reduced χ2 equal to one for the best-fit solution
(0.333% at 3.6 µm and 0.466% at 4.5 µm). In our wavelet
MCMC we maximize the likelihood function instead of
minimizing χ2, which allows us to fit for the white (σw)
and red (σr) noise contributions to the per-point uncer-
tainties. The wavelet transform routine requires our data
to have a length equal to a power of two, which we achieve
by subdividing each phase curve into thirteen segments
of equal length and zero-padding by either 6% (3.6 µm)
or 3% (4.5 µm). We prefer zero-padding over trimming
as it allows us to include all available data in our fits,
and we find that this approach has a negligible effect on
our best-fit noise parameters.
We initialize each chain at a position determined by

randomly perturbing the best-fit parameters from a
Levenberg-Marquardt minimization. After running the
chain, we search for the point where the χ2 value first
falls below the median of all the χ2 values in the chain
(i.e. where the code had first found the optimal fit), and
discard all steps up to that point. For the wavelet MCMC
we perform a similar trim where the likelihood first rises
above the median value. We set our best-fit parameters
equal to the median of each distribution and calculate
the corresponding uncertainties as the symmetric range
about the median containing 68% of the points in the
distribution. The distribution of values was very close
to symmetric for all parameters, and there did not ap-
pear to be any detectible correlations between variables
aside from i and a/R!. Our wavelet analysis produces
modestly higher uncertainties for most parameters, with
the greatest increases in the planet-star radius ratio and
secondary eclipse depth errors, which were a factor of
two larger than in the standard Gaussian χ2 fits. We list
the best-fit parameters and corresponding wavelet-based
uncertainties in Table 1.
For both fits the standard deviation of our best-fit

residuals is a factor of 1.12 higher than the predicted

4.5 µm
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Figure 11. Measured flux as a function of time in the 8 µm array
for pixels with illumination levels ranging from 1000 − 2000 MJy
Sr−1 (bottom curve) to 4000 − 45000 MJy Sr−1 (top curve), with
best-fit fourth-order polynomial functions of time (red lines) over-
plotted for comparison. Although the detector ramp typically re-
sembles an asymptote that converges on time scales related to the
median illumination level, the most highly illuminated pixels ex-
hibit an additional over-shooting effect that could lead to residuals
in the corrected light curves if not taken into account in our choice
of functional form to describe the ramp.

seventh-order polynomial function of time to describe
the ramp in Knutson et al. (2007), we only corrected a
subset of the lower-illumination pixels inside our photo-
metric aperture. If the uncorrected higher-illumination
pixels in our aperture displayed this behavior, or if it
was inadequately described by our polynomial fits to
the lower-illumination pixels, then we would expect to
see a local minimum near the start of our observations.
Based on these data, we conclude that the flux mini-
mum observed in our corrected data could reasonably
be attributed to this overshooting effect, rather than the
planet’s phase curve. For the purposes of comparing our
8 µm phase curve to other wavelengths, we adopt the
convention of Agol et al. (2010) and trim the first part of
the light curve where the ramp correction is largest and
our conclusions correspondingly uncertain. This trim-
ming does not affect our estimate of the location of the
flux maximum, but it does prevent us from determining
the location of the flux minimum in these data.

4.4. Comparison to General Circulation Models

In this section we combine our new 3.6 and
4.5 µm phase curves with our previous observations at 8.0
and 24 µm (Knutson et al. 2009a) and compare these re-
sults to the predictions of 3D general circulation models
from Showman et al. (2009). These models use the MIT-
gcm to solve the primitive equations in three dimensions,
and are coupled to a non-grey radiative transfer scheme.
Showman et al. considered four complementary cases for
the planet, corresponding to: 1) a solar metallicity atmo-
sphere and a 1:1 ratio for the planet’s rotation and orbital
periods, 2) a 5× solar metallicity atmosphere and 1:1 ro-
tation, 3) a solar metallicity atmosphere and a 1:2 ro-
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Figure 12. Measured phase variations in the 3.6 (blue circles), 4.5
(green circles), 8.0 (orange open circles from Knutson et al. 2007,
2009a, orange filled circles from Agol et al. 2010), and 24 µm (red
diamonds) Spitzer bands after correcting for stellar flux variations
and instrument effects. Overplotted lines indicate the predictions
of general circulation models for this planet in each band from
Showman et al. (2009), assuming either solar (solid) or 5× solar
(dashed) metallicity.
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Figure 13. Same data as in Fig. 12. The overplotted lines indi-
cate the predictions of general circulation models for this planet in
each band from Showman et al. (2009), assuming either a slowly
rotating (0.5× orbital period; solid line) or rapidly rotating (2×
orbital period; dashed line) planet.

tation period (i.e., more slowly rotating than the tidally
locked case), and 4) a solar metallicity atmosphere and a
2:1 rotation period (i.e., the rapid rotation case). We cal-
culate phase curves in the 3.6, 4.5, 8.0, and 24 µm Spitzer
bands for each model following the method described in
Fortney et al. (2006). We use an interpolated PHOENIX

model to calculate planet-star flux ratios and confirm
that this model gives predictions consistent with those
of the ATLAS model used with the 1D models in §4.2.1.
We compare the resulting predictions to our measured
phase curves in Fig. 12 and 13; see Table 2 for a more
quantitative comparison.
In examining the locations of the local maxima and

minima, we find that the slow rotator model is the only
one that provides an acceptable fit (< 3σ disagreement)
to the measured offsets in the 4.5, 8.0, and 24 µm bands.
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Figure 11. Measured flux as a function of time in the 8 µm array
for pixels with illumination levels ranging from 1000 − 2000 MJy
Sr−1 (bottom curve) to 4000 − 45000 MJy Sr−1 (top curve), with
best-fit fourth-order polynomial functions of time (red lines) over-
plotted for comparison. Although the detector ramp typically re-
sembles an asymptote that converges on time scales related to the
median illumination level, the most highly illuminated pixels ex-
hibit an additional over-shooting effect that could lead to residuals
in the corrected light curves if not taken into account in our choice
of functional form to describe the ramp.

seventh-order polynomial function of time to describe
the ramp in Knutson et al. (2007), we only corrected a
subset of the lower-illumination pixels inside our photo-
metric aperture. If the uncorrected higher-illumination
pixels in our aperture displayed this behavior, or if it
was inadequately described by our polynomial fits to
the lower-illumination pixels, then we would expect to
see a local minimum near the start of our observations.
Based on these data, we conclude that the flux mini-
mum observed in our corrected data could reasonably
be attributed to this overshooting effect, rather than the
planet’s phase curve. For the purposes of comparing our
8 µm phase curve to other wavelengths, we adopt the
convention of Agol et al. (2010) and trim the first part of
the light curve where the ramp correction is largest and
our conclusions correspondingly uncertain. This trim-
ming does not affect our estimate of the location of the
flux maximum, but it does prevent us from determining
the location of the flux minimum in these data.

4.4. Comparison to General Circulation Models

In this section we combine our new 3.6 and
4.5 µm phase curves with our previous observations at 8.0
and 24 µm (Knutson et al. 2009a) and compare these re-
sults to the predictions of 3D general circulation models
from Showman et al. (2009). These models use the MIT-
gcm to solve the primitive equations in three dimensions,
and are coupled to a non-grey radiative transfer scheme.
Showman et al. considered four complementary cases for
the planet, corresponding to: 1) a solar metallicity atmo-
sphere and a 1:1 ratio for the planet’s rotation and orbital
periods, 2) a 5× solar metallicity atmosphere and 1:1 ro-
tation, 3) a solar metallicity atmosphere and a 1:2 ro-
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Figure 12. Measured phase variations in the 3.6 (blue circles), 4.5
(green circles), 8.0 (orange open circles from Knutson et al. 2007,
2009a, orange filled circles from Agol et al. 2010), and 24 µm (red
diamonds) Spitzer bands after correcting for stellar flux variations
and instrument effects. Overplotted lines indicate the predictions
of general circulation models for this planet in each band from
Showman et al. (2009), assuming either solar (solid) or 5× solar
(dashed) metallicity.
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Figure 13. Same data as in Fig. 12. The overplotted lines indi-
cate the predictions of general circulation models for this planet in
each band from Showman et al. (2009), assuming either a slowly
rotating (0.5× orbital period; solid line) or rapidly rotating (2×
orbital period; dashed line) planet.

tation period (i.e., more slowly rotating than the tidally
locked case), and 4) a solar metallicity atmosphere and a
2:1 rotation period (i.e., the rapid rotation case). We cal-
culate phase curves in the 3.6, 4.5, 8.0, and 24 µm Spitzer
bands for each model following the method described in
Fortney et al. (2006). We use an interpolated PHOENIX

model to calculate planet-star flux ratios and confirm
that this model gives predictions consistent with those
of the ATLAS model used with the 1D models in §4.2.1.
We compare the resulting predictions to our measured
phase curves in Fig. 12 and 13; see Table 2 for a more
quantitative comparison.
In examining the locations of the local maxima and

minima, we find that the slow rotator model is the only
one that provides an acceptable fit (< 3σ disagreement)
to the measured offsets in the 4.5, 8.0, and 24 µm bands.

HD 189733b Models

• Composition Test

• Rotation Rate Test

1x Solar Composition
5x Solar Composition

Slow rotator (2x Porb)
Fast rotator (0.5x Porb)

Knutson, Lewis et al. (2012)
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Conclusions

• Three-dimensional atmospheric models that treat radiative, 
advective, and chemical processes consistently are key to 
understanding the basic wind and thermal structure of exoplanet 
atmospheres.

• Phase-curve observations of hot-Jupiters allow observers to 
directly measure thermal gradients in exoplanet atmospheres and 
relate those gradients to global circulation patterns.

•  Exoplanet modeling efforts need to further explore the effects of 
disequilibrium chemistry and clouds on global circulation patterns.

•  More than a dozen full-orbit phase-curve observations now 
completed, with more to come!
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