The Search for Exomoons

David M. Kipping^{1,2} ¹ Harvard-Smithsonian Center for Astrophysics; ² Carl Sagan Fellow

• No guarantee of success, unusual class of object

- No guarantee of success, unusual class of object
- "For moons the effects are likely to be not just small, but minute—right on the hairy edge of what Kepler can do" Greg Laughlin, The Economist

- No guarantee of success, unusual class of object
- "For moons the effects are likely to be not just small, but minute—right on the hairy edge of what Kepler can do" Greg Laughlin, The Economist
- But, the potential for new understanding is extraordinary.

- Intrinsic habitability
- Extrinsic habitability
- Planet formation theory

- Intrinsic habitability
- Extrinsic habitability
- Planet formation theory

- Intrinsic habitability
- Extrinsic habitability
- Planet formation theory

- Intrinsic habitability
- Extrinsic habitability
- Planet formation theory

- Intrinsic habitability
- Extrinsic habitability
- Planet formation theory

- Intrinsic habitability
- Extrinsic habitability
- Planet formation theory

- Intrinsic habitability
- Extrinsic habitability
- Planet formation theory

- Intrinsic habitability
- Extrinsic habitability
- Planet formation theory

Order-of-Magnitude Feasibility

- Roughly, Kepler is sensitive to $\sim IR_{\oplus}$ planets
- \Rightarrow Kepler is sensitive to $\sim IR_{\oplus}$ moons
- We may be able to detect Earth-sized/mass moons

Order-of-Magnitude Feasibility

No such moons in the Solar System, so we are searching for an alien class of object

I. Dynamical effects (gives M_S)

I. Dynamical effects (gives M_S)

(i) Transit timing variations (TTV)

- I. Dynamical effects (gives M_S)
 - (i) Transit timing variations (TTV)
 - (ii) Velocity induced transit duration variations(TDV-V)

- I. Dynamical effects (gives M_S)
 - (i) Transit timing variations (TTV)
 - (ii) Velocity induced transit duration variations (TDV-V)
 - (iii)Transit impact parameter induced transit duration variations (TDV-TIP)

- I. Dynamical effects (gives M_S)
 - (i) Transit timing variations (TTV)
 - (ii) Velocity induced transit duration variations (TDV-V)
 - (iii)Transit impact parameter induced transit duration variations (TDV-TIP)
- 2. Eclipse effects (gives R_S)

- I. Dynamical effects (gives M_S)
 - (i) Transit timing variations (TTV)
 - (ii) Velocity induced transit duration variations (TDV-V)
 - (iii)Transit impact parameter induced transit duration variations (TDV-TIP)
- 2. Eclipse effects (gives R_S)
 - (i) Auxiliary transits

- I. Dynamical effects (gives M_S)
 - (i) Transit timing variations (TTV)
 - (ii) Velocity induced transit duration variations (TDV-V)
 - (iii)Transit impact parameter induced transit duration variations (TDV-TIP)
- 2. Eclipse effects (gives R_S)
 - (i) Auxiliary transits
 - (ii) Mutual events

LUNA

- LUNA: An algorithm to generate dynamic planet-moon transits (Kipping 2011)
- LUNA accounts for TTV/TDV-V/TDV-TIP as well as auxiliary transits/mutual events
- Fully dynamic and analytic => very fast
- Accounts for limb darkening too
- Even models previously unconsidered effects, such as ingress/egress asymmetry

Neptune in hab-zone of M2 dwarf with **far-out retrograde** Earth-mass and radius moon

We see *auxiliary transits* of the moon. 50-sigma detection with Kepler.

Neptune in hab-zone of M2 dwarf with **far-out retrograde** Earth-mass and radius moon

We see *auxiliary transits* of the moon. 50-sigma detection with Kepler.

Neptune in hab-zone of M2 dwarf with **close-in prograde** Earth-mass and radius moon

We see **mutual events** of the moon. 25-sigma detection with Kepler.

Neptune in hab-zone of M2 dwarf with **close-in prograde** Earth-mass and radius moon

We see **mutual events** of the moon. 25-sigma detection with Kepler.

David M. Kipping^{1,2}, Gáspár Á. Bakos³, Lars Buchhave⁴, David Nesvorný⁵, Joel Hartman³, Allan Schmitt⁶

¹ Harvard-Smithsonian Center for Astrophysics; ² Carl Sagan Fellow; ³ Princeton University;
 ⁴ Neils Bohr Institute; ⁵ Southwest Research Institute; ⁶ Citizen Scientist

• The first systematic search for transiting exomoons.

- The first systematic search for transiting exomoons.
- Using public Kepler data

- The first systematic search for transiting exomoons.
- Using public Kepler data
- Utilizing LUNA to identify exomoons

- The first systematic search for transiting exomoons.
- Using public Kepler data
- Utilizing LUNA to identify exomoons
- Primary goal: detect a transiting exomoon(s)

- The first systematic search for transiting exomoons.
- Using public Kepler data
- Utilizing LUNA to identify exomoons
- Primary goal: detect a transiting exomoon(s)
- Secondary goal: obtain upper limits

- The first systematic search for transiting exomoons.
- Using public Kepler data
- Utilizing LUNA to identify exomoons
- Primary goal: detect a transiting exomoon(s)
- Secondary goal: obtain upper limits
- Tertiary goal: determine the frequency of large moons around viable planet hosts, $\eta_{(\!(}$

>2300 KOIs to choose from. Each KOI requires
 ~weeks CPU time => target selection required

- >2300 KOIs to choose from. Each KOI requires
 ~weeks CPU time => target selection required
- Parameter searches are highly multimodal

- >2300 KOIs to choose from. Each KOI requires
 ~weeks CPU time => target selection required
- Parameter searches are highly multimodal
- Signals expected to be at the limit of Kepler's sensitivity

- >2300 KOIs to choose from. Each KOI requires
 ~weeks CPU time => target selection required
- Parameter searches are highly multimodal
- Signals expected to be at the limit of Kepler's sensitivity
- Starspots, correlated noise and perturbing planets are challenging sources of false positive

- >2300 KOIs to choose from. Each KOI requires
 ~weeks CPU time => target selection required
- Parameter searches are highly multimodal
- Signals expected to be at the limit of Kepler's sensitivity
- Starspots, correlated noise and perturbing planets are challenging sources of false positive
- Bayesian model selection and inference is a must

- >2300 KOIs to choose from. Each KOI requires
 ~weeks CPU time => target selection required
- Parameter searches are highly multimodal
- Signals expected to be at the limit of Kepler's sensitivity
- Starspots, correlated noise and perturbing planets are challenging sources of false positive
- Bayesian model selection and inference is a must
- No-one has ever done this anything like this before
 we are forced to invent everything as we go

 One of our first TSVs (target selection visual), identified as showing in-transit anomalies:

Identified by Kepler (Borucki et al. 2010) as a candidate planet with P=33.6 d, Saturn-sized transit dip. Only one candidate in the system.

 More detailed study showed huge TTVs...

• And also stellar activity (like rotating spots)...

But the TTVs are not poorly fit by a moon model...

- So we tried a second planet instead.
- 5:3 resonance (red) works very well.
- 5:2 does OK (blue) but requires an inclined planet
 TDVs, which we do not see.

KOI-872.02 = KOI 872c

- The 2nd planet is very precisely pinned down.
- Dynamically measured mass ratio confirms the candidate is a real planet of Saturn-mass.

	KOI-872b	KOI-872c
τ ₀ (B]D _{UTC})	2455053.2826 ^{+0.0013} -0.0014	_
P_P (days)	33.60134 ^{+0.00021}	$57.004\substack{+0.091\\-0.100}$
R_P/R_*	$0.0887\substack{+0.0011\\-0.0012}$	_
b _P	0.759 ^{+0.022} -0.027	$3.1^{+1.1}_{-1.9}$
a _P /R∗	$44.9^{+2.1}_{-1.8}$	63 .9 ^{+2.9} -2.5
i _P (°)	89.033 ^{+0.076}	$87.25\substack{+1.70 \\ -0.95}$
<i>a_P</i> (AU)	$0.1967^{+0.0029}_{-0.0028}$	$0.2799\substack{+0.0041\\-0.0040}$
e _P	$0.01\substack{+0.01\\-0.01}$	$0.0145\substack{+0.0035\\-0.0039}$
Ω_{P} (°)	270	303 ⁺²⁰
መ _P (°)	_	329.4 ⁺¹¹
λ _P (°)	0	$338.3^{+1.3}_{-1.4}$
M _P /M∗	$< 6.4 \times 10^{-3}$	$3.97^{+0.17}_{-0.14} imes 10^{-4}$
$M_P (M_{\rm J})$	<6	0.376 ^{+0.023} _0.020
$R_P(R_{\rm J})$	$0.812\substack{+0.043\\-0.043}$	—
ρ_P (kg m ⁻³)	<14000	-
T _{eq} (K)	544^{+16}_{-16}	456 ⁺¹³

KOI-872.01 = KOI 872b

- TTVs do not allow us to measure mass of inner object (yet).
- However, dynamical stability requires mass is less than 6 Jupiter masses => a real planet

	KOI-872b	KOI-872c
τ ₀ (B]D _{UTC})	$2455053.2826^{+0.0013}_{-0.0014}$	_
P_P (days)	33.60134 ^{+0.00021}	$57.004\substack{+0.091\\-0.100}$
R _P /R∗	$0.0887\substack{+0.0011\\-0.0012}$	_
b _P	$0.759^{+0.022}_{-0.027}$	$3.1^{+1.1}_{-1.9}$
a _P /R∗	$44.9^{+2.1}_{-1.8}$	63.9 ^{+2.9}
i _P (°)	89.033 ^{+0.076}	$87.25\substack{+1.70\\-0.95}$
<i>a_P</i> (AU)	$0.1967\substack{+0.0029\\-0.0028}$	$0.2799\substack{+0.0041\\-0.0040}$
e _P	$0.01\substack{+0.01\\-0.01}$	$0.0145\substack{+0.0035\\-0.0039}$
$\Omega_{\mathcal{P}}$ (°)	270	303 ⁺²⁰ -34
መ _P (°)	_	329.4 ⁺¹¹ -9.2
λ _P (°)	0	$338.3^{+1.3}_{-1.4}$
M _P /M∗	$< 6.4 \times 10^{-3}$	$3.97^{+0.17}_{-0.14} imes10^{-4}$
$M_P (M_{\rm J})$	<6	$0.376\substack{+0.023\\-0.020}$
$R_P(R_{\rm J})$	$0.812\substack{+0.043\\-0.043}$	-
ρ_{P} (kg m ⁻³)	<14000	-
7 _{eq} (K)	544 ⁺¹⁶	456 ⁺¹³

Does KOI 872c transit?

• TTVs imply c does not transit, now or ever.

KOI-872c does not transit

Thursday, November 15, 2012

But we did find something...

- A 6.7d
 periodic
 signal.
- Depth implies a radius of 1.7 Earth radii.
- Previously
 missed by the
 Kepler Team

But we did find something...

- A 6.7d
 periodic
 signal.
- Depth implies a radius of 1.7 Earth radii.
 - Previously
 missed by the
 Kepler Team

	KOI-872b	KOI-872c	KOI-872.03
τ ₀ (B]D _{UTC})	2455053.2826 ^{+0.0013}	_	2455255.2603 ^{+0.0032} -0.0031
P_P (days)	$33.60134\substack{+0.00021\\-0.00020}$	$57.004\substack{+0.091\\-0.100}$	$6.76671\substack{+0.00013\\-0.00012}$
R_P/R_*	$0.0887\substack{+0.0011\\-0.0012}$	_	$0.01656\substack{+0.00079\\-0.00082}$
b _P	$0.759\substack{+0.022\\-0.027}$	$3.1^{+1.1}_{-1.9}$	$0.39\substack{+0.19\\-0.12}$
a _P /R∗	$44.9^{+2.1}_{-1.8}$	63.9 ^{+2.9} -2.5	$15.58\substack{+0.51\\-0.49}$
i _P (°)	89.033 ^{+0.076} -0.069	$87.25\substack{+1.70 \\ -0.95}$	$88.56\substack{+0.48\\-0.69}$
<i>a_P</i> (AU)	$0.1967\substack{+0.0029\\-0.0028}$	$0.2799\substack{+0.0041\\-0.0040}$	$0.0680^{+0.0030}_{-0.0030}$
e _P	$0.01\substack{+0.01\\-0.01}$	$0.0145\substack{+0.0035\\-0.0039}$	0 (assumed)
Ω_P (°)	270	303 ⁺²⁰	_
ත _P (°)	_	329.4 ⁺¹¹	-
λ _P (°)	0	$338.3^{+1.3}_{-1.4}$	-
M _P /M∗	$< 6.4 \times 10^{-3}$	$3.97^{+0.17}_{-0.14} imes10^{-4}$	_
M_P (M_1)	<6	$0.376^{+0.023}_{-0.020}$	-
$R_P(R_1)$	$0.812\substack{+0.043\\-0.043}$	_	$0.1513^{+0.0085}_{-0.0089}$
$\rho_P (kg m^{-3})$	<14000	-	-
T _{eq} (K)	544^{+16}_{-16}	456 ⁺¹³	924 ⁺³⁷ -36
M _{moon} /M _P	<0.021	-	
	KOI-872		
ρ∗ (kg m ⁻³)	1520^{+220}_{-170}		
M∗ (M₀)	$0.902 \substack{+0.040\\-0.037}$		
<i>R</i> ∗ (<i>R</i> _☉)	$0.940^{+0.039}_{-0.040}$		
$\log q_*$	$4.445^{+0.041}_{-0.036}$		
$T_{\rm eff}$ (K) (SPC)	5155 ± 105		
L∗ (L _☉)	$0.559^{+0.0793}_{-0.0699}$		
M _V	5.60 ^{+0.17}		
Age (Gyr)	9.9 ^{+3.5}		
Distance (pc)	857_69		
(M/H) (SPC)	0.41 ± 0.10		

	KOI-872b	KOI-872c	KOI-872.03
τ ₀ (B]D _{UTC})	2455053.2826 ^{+0.0013}	_	2455255.2603 ^{+0.0032} 1
P_P (days)	$33.60134\substack{+0.00021\\-0.00020}$	$57.004\substack{+0.091\\-0.100}$	$6.76671\substack{+0.00013\\-0.00012}$
R_P/R_*	$0.0887\substack{+0.0011\\-0.0012}$	-	$0.01656\substack{+0.00079\\-0.00082}$
b _P	$0.759_{-0.027}^{+0.022}$	$3.1^{+1.1}_{-1.9}$	$0.39\substack{+0.19\\-0.12}$
a _P /R∗	$44.9^{+2.1}_{-1.8}$	63.9 ^{+2.9}	$15.58\substack{+0.51\\-0.49}$
i _P (°)	89.033 ^{+0.076}	$87.25\substack{+1.70\\-0.95}$	$88.56\substack{+0.48\\-0.69}$
<i>a_P</i> (AU)	$0.1967\substack{+0.0029\\-0.0028}$	$0.2799\substack{+0.0041\\-0.0040}$	0.0680 ^{+0.0030}
e _P	$0.01\substack{+0.01\\-0.01}$	$0.0145\substack{+0.0035\\-0.0039}$	0 (assumed)
Ω_{P} (°)	270	303 ⁺²⁰	-
መ _P (°)	_	$329.4^{+11}_{-9.2}$	-
λ _P (°)	0	338.3 ^{+1.3}	-
M _P /M∗	$< 6.4 \times 10^{-3}$	$3.97^{+0.17}_{-0.14} imes 10^{-4}$	_
$M_P (M_{\rm J})$	<6	$0.376\substack{+0.023\\-0.020}$	-
$R_P (R_{\rm J})$	$0.812\substack{+0.043\\-0.043}$	-	$0.1513^{+0.0085}_{-0.0089}$
ρ_P (kg m ⁻³)	<14000	-	-
T _{eq} (K)	544^{+16}_{-16}	456 ⁺¹³	924-36
M _{moon} /M _P	<0.021	-	-
	KOI-872		
ρ∗ (kg m ⁻³)	1520+220		
, M∗ (M _☉)	$0.902\substack{+0.040\\-0.037}$		
<i>R</i> ∗ (<i>R</i> _☉)	$0.940\substack{+0.039\\-0.040}$		
log g∗	$4.445\substack{+0.041\\-0.036}$		
T _{eff} (K) (SPC)	5155 ± 105		
L∗ (L _☉)	$0.559\substack{+0.0793\\-0.0699}$		
M _V	$5.60^{+0.17}_{-0.17}$		
Age (Gyr)	9.9 ^{+3.5} -3.1		
Distance (pc)	857_69		
(M/H) (SPC)	0.41 ± 0.10		

	KOI-872b	KOI-872c	KOI-872.03
τ ₀ (B]D _{UTC})	2455053.2826 ^{+0.0013}	_	2455255.2603 ^{+0.0032}
P_P (days)	$33.60134\substack{+0.00021\\-0.00020}$	$57.004\substack{+0.091\\-0.100}$	$6.76671\substack{+0.00013\\-0.00012}$
R_P/R_*	$0.0887\substack{+0.0011\\-0.0012}$	_	$0.01656\substack{+0.00079\\-0.00082}$
b _P	$0.759^{+0.022}_{-0.027}$	$3.1^{+1.1}_{-1.9}$	$0.39\substack{+0.19\\-0.12}$
a _P /R∗	$44.9^{+2.1}_{-1.8}$	63.9 ^{+2.9} -2.5	$15.58\substack{+0.51\\-0.49}$
i _P (°)	89.033 ^{+0.076}	$87.25^{+1.70}_{-0.95}$	$88.56\substack{+0.48\\-0.69}$
<i>a_P</i> (AU)	$0.1967\substack{+0.0029\\-0.0028}$	$0.2799\substack{+0.0041\\-0.0040}$	0.0680 ^{+0.0030}
ep	$0.01\substack{+0.01\\-0.01}$	0.0145 ^{+0.0035} 0.0145 ^{+0.0039}	0 (assumed)
Ω_P (°)	270	303 ⁺²⁰	-
መ _P (°)		329.4 ⁺¹¹	-
λ _P (°)	0	338.3 ^{+1.3}	-
M _P /M∗	$< 6.4 \times 10^{-3}$	$3.97^{+0.17}_{-0.14} imes 10^{-4}$	_
M_P ($M_{\rm J}$)	<6	$0.376\substack{+0.023\\-0.020}$	-
R_P (R_J)	$0.812\substack{+0.043\\-0.043}$	-	$0.1513^{+0.0085}_{-0.0089}$
ρ _P (kg m ⁻³)	<14000	-	-
T _{eq} (K)	544^{+16}_{-16}	456 ⁺¹³	924-36
M _{moon} /M _P	<0.021	-	-
	KOI-872		
ρ_* (kg m ⁻³)	1520+220		
, M∗ (M _☉)	$0.902\substack{+0.040\\-0.037}$		
<i>R</i> ∗ (<i>R</i> _☉)	$0.940\substack{+0.039\\-0.040}$		
log g∗	$4.445\substack{+0.041\\-0.036}$		
T _{eff} (K) (SPC)	5155 ± 105		
L∗ (L _☉)	$0.559^{+0.0793}_{-0.0699}$		
M_V	$5.60^{+0.17}_{-0.17}$		
Age (Gyr)	9.9 ^{+3.5} -3.1		
Distance (pc)	857_64		
(M/H) (SPC)	0.41 ± 0.10		

	KOI-872b	KOI-872c	KOI-872.03
τ ₀ (B]D _{UTC})	2455053.2826 ^{+0.0013} -0.0014	_	2455255.2603 ^{+0.0032}
P_P (days)	$33.60134\substack{+0.00021\\-0.00020}$	$57.004\substack{+0.091\\-0.100}$	$6.76671\substack{+0.00013\\-0.00012}$
R_P/R_*	$0.0887\substack{+0.0011\\-0.0012}$	_	$0.01656\substack{+0.00079\\-0.00082}$
b _P	$0.759\substack{+0.022\\-0.027}$	$3.1^{+1.1}_{-1.9}$	$0.39^{+0.19}_{-0.12}$
a _P /R∗	$44.9^{+2.1}_{-1.8}$	63.9 ^{+2.9} -2.5	$15.58\substack{+0.51\\-0.49}$
i _P (°)	89.033 ^{+0.076}	$87.25^{+1.70}_{-0.95}$	$88.56\substack{+0.48\\-0.69}$
<i>a_P</i> (AU)	$0.1967\substack{+0.0029\\-0.0028}$	$0.2799\substack{+0.0041\\-0.0040}$	0.0680 ^{+0.0030}
ep	$0.01\substack{+0.01\\-0.01}$	0.0145 ^{+0.0035}	0 (assumed)
Ω_P (°)	270	303 ⁺²⁰	-
መ _P (°)	_	$329.4^{+11}_{-9.2}$	-
λ _P (°)	0	$338.3^{+1.3}_{-1.4}$	-
M _P /M∗	$< 6.4 \times 10^{-3}$	$3.97^{+0.17}_{-0.14} imes 10^{-4}$	_
M_P ($M_{\rm J}$)	<6	$0.376\substack{+0.023\\-0.020}$	-
R_P ($R_{\rm J}$)	$0.812\substack{+0.043\\-0.043}$	-	$0.1513^{+0.0085}_{-0.0089}$
ρ _P (kg m ⁻³)	<14000	-	
T _{eq} (K)	544^{+16}_{-16}	456 ⁺¹³	924 ⁺³⁷
M _{moon} /M _P	<0.021	-	
	KOI-872		
ρ_* (kg m ⁻³)	1520 ⁺²²⁰		
M∗ (M _☉)	$0.902\substack{+0.040\\-0.037}$		
<i>R</i> ∗ (<i>R</i> _☉)	$0.940\substack{+0.039\\-0.040}$		
log g∗	$4.445\substack{+0.041\\-0.036}$		
$T_{\rm eff}$ (K) (SPC)	5155 ± 105		
L∗ (L _☉)	$0.559^{+0.0793}_{-0.0699}$		
M_V	5.60 ^{+0.17}		
Age (Gyr)	9 .9 ^{+3.5} -3.1		
Distance (pc)	857_69		
(M/H) (SPC)	$\textbf{0.41}\pm\textbf{0.10}$		

	KOI-872b	KOI-872c	KOI-872.03
τ ₀ (B]D _{UTC})	$2455053.2826^{+0.0013}_{-0.0014}$	_	2455255.2603 ^{+0.0032}
P_P (days)	$33.60134\substack{+0.00021\\-0.00020}$	$57.004\substack{+0.091\\-0.100}$	$6.76671\substack{+0.00013\\-0.00012}$
R_P/R_*	$0.0887\substack{+0.0011\\-0.0012}$	_	$0.01656\substack{+0.00079\\-0.00082}$
b _P	$0.759\substack{+0.022\\-0.027}$	$3.1^{+1.1}_{-1.9}$	$0.39_{-0.12}^{+0.19}$
a _P /R∗	$44.9^{+2.1}_{-1.8}$	63.9 ^{+2.9}	$15.58\substack{+0.51\\-0.49}$
i _P (°)	89.033 ^{+0.076}	$87.25^{+1.70}_{-0.95}$	$88.56^{+0.48}_{-0.69}$
<i>a_P</i> (AU)	$0.1967\substack{+0.0029\\-0.0028}$	$0.2799\substack{+0.0041\\-0.0040}$	0.0680 ^{+0.0030}
e _P		$0.0145_{-0.0039}^{+0.0035}$	0 (assumed)
Ω_P (°)	270	303 ⁺²⁰	_
യ _P (°)	_	$329.4^{+11}_{-9.2}$	-
λ _P (°)	0	$338.3^{+1.3}_{-1.4}$	-
M _P /M∗	$< 6.4 \times 10^{-3}$	$3.97^{+0.17}_{-0.14} \times 10^{-4}$	-
М _Р (М _])	<6	$0.376_{-0.020}^{+0.023}$	
$R_P(R_{\rm J})$	$0.812^{+0.043}_{-0.043}$	-	$0.1513_{-0.0089}^{+0.0085}$
ρ _P (kg m ⁻³)	<14000		-
T _{eq} (K)	544^{+10}_{-16}	456-13	924-36
M _{moon} /M _P	<0.021	-	-
	KOI-872		
ρ∗ (kg m^{−3})	1520 ⁺²²⁰		
M∗ (M _☉)	$0.902\substack{+0.040\\-0.037}$	NI	
<i>R</i> ∗ (<i>R</i> _☉)	$0.940\substack{+0.039\\-0.040}$	INO MOO	n. but when
log g∗	$4.445\substack{+0.041\\-0.036}$		
$T_{\rm eff}$ (K) (SPC)	5155 ± 105	lifa givas	vou lemons
L∗ (L _☉)	$0.559_{-0.0699}^{+0.0793}$		you lemons,
M_V	$5.60^{+0.17}_{-0.17}$		- - I I
Age (Gyr)	9.9 ^{+3.5}	make len	nonade!
Distance (pc)	857_64		
(M/H) (SPC)	$\textbf{0.41}\pm\textbf{0.10}$		

Questions?