

Imaging Stars and Planets with the CHARA Interferometer

0.5 milliarcseconds

Ming Zhao JPL

Collaborators: John D. Monnier (U. Michigan) Theo ten Brummalaar, Douglas Gies (CHARA), Ettore Pedretti, Nathalie Thureau (Univ. of St. Andrews)

Sagan Symposium 2009 Nov 12 -13 ----

Stars - big or small?

- The nearest star: α Cen (A) R = 1.23 R_{sun}, D = 1.34 pc Angular size = 4.3 milliarcseconds
- The brightest star: Sirius (A)

R = 1.71 Rsun, D = 2.64 pc

Angular size = 3.0 milliarcseconds

Observatory	Wavelength	Diameter Or Baseline	Angular Resolution
Hubble Space Telescope	500 nm	2.4m	43 milli-arcsecond
Keck Observatory	1.65 micron	10 m	34 milli-arcsecond

1 milliarcsecond at 1.65 micron => 340 m ! (λ /D)

MIRC: Michigan Infrared Combiner

Basic Capabilities:

- 1) Designed for *imaging* -- currently combines 4 telescopes at once
- 2) 1.5-2.4 micron wavelength coverage
 - (in this talk, all results are H band, 1.65 microns)
- 3) Spectral modes: R~40,150,400

CHARA+MIRC can image and provide new science to :

- Stars rapid rotators, spotty stars, etc.
- Binaries interacting systems
- Circumstellar disks YSO disks,

Be star disks

• Hot Jupiter systems

Imaging Stellar Surfaces: Resolving Rapid Rotation

- Rapid rotation of hot stars is expected to
 - Distort stellar photosphere
 - Cause "gravity darkening" along the stellar equator (von Zeipel 1924)
 - Modify interior angular momentum and differential rotation
- Importance in many areas
 - Rotation-induced mixing causing observed abundance anomalies (Pinsonneault 1997)
 - Alters H-R diagram and Mass-Luminosity relation (Maeder & Maynet 2000)
 - Affects circum-stellar environments
 - Link to Gamma Ray Burst progenitors Sagan Symposium 2009 Nov 12 -13 -

Imaging

- All previous results were based on model-fitting of interferometry data with a few baselines
- Basic model of Von Zeipel (1924ab)
 - Big assumptions: solid body rotation, point gravity, simplistic radiative transfer model for outer layers
- Hydro models suggest non-solid body rotation, e.g., differential rotation, meridional flows
 - Jackson et al. 2004; MacGregor 2007; Espinosa Lara & Rieutard 2007
- "Model-Independent" imaging with CHARA-MIRC can test wide class of models

First image of a main-sequence star (besides the Sun...)

- Altair (α Aql, V=0.7)
 - Nearby hot star (d=5.1pc, A7V, T=7850 K)
 - Rapidly rotating (v sin i = 240 km/s, ~90% breakup)

Modeling Altair

- Construct 3D sphere + apply von Zeipel model (T ∝ g^β)
 + Kurucz limb darkening
- Fast algorithm: more accurate, faster

Model of a fast-spinning star

0.1 revolutions/day

<u>More Results:</u> Alderamin (α Cep)

- A7 IV-V, D = 15pc
- ~93% of break-up, 12.46 hrs/cyc
- R_eq/R_pol = 1.26
- T_pol T_eq = 2000K

Alpha Cep Model (β=0.22)

More Results: Rasalhague (α Oph)

- ~ 89% break-up, 14.6 hrs/cyc
- T_pol -T_eq = 1850 K
- R_eq/R_pol = 1.20

Alpha Oph Model (β=0.25)

Scrutinizing von Zeipel Theory

- Our models prefer non-standard von Zeipel law
- Models show that the polar areas of the stars are radiative and equatorial areas might be convective
 - Other evidence: both stars have strong chromosphere activity
- Images show that equator is cooler than expected
 - Differential Rotation?
 - Spectral line analysis underway

Imaging Stars and Planets with the CHARA Array

More Results: 7 rapid rotators in total

Star	Spectral Type
Regulus (α Leo)	B8IV
Vega (α Lyr)	A0V
Denebola (β Leo)	A3V
Rasalhague (α Oph)	A5IV
Altair (α Aql)	A7V
Alderamin (α Cep)	A7IV-V
Caph (β Cas)	F2 IV

A well-known "β Lyrae" system:

• β Lyrae: interacting and eclipsing binary (period 12.9 days)

- B6-8 II donor + B gainer in a thick disk
- V = 3.52, H = 3.35; distance ~300pc

Previous Studies on Beta Lyrae

- Mostly light curves
- NPOI imaging of H α emission region

Previous Studies on Beta Lyrae

- Mostly light curves
- NPOI imaging of H α emission region

However, components unresolved, no astrometric orbit available

CHARA-MIRC Image

Model

Phase = 0.132

Sagan Symposium 2009 Nov 12 -13 ---

CHARA-MIRC Image

Model

Phase = 0.210

CHARA-MIRC Image

Model

Phase = 0.438

Sagan Symposium 2009 Nov 12 -13 ---

CHARA-MIRC Image

Model

Sagan Symposium 2009 Nov 12 -13 ---

Zhao et al. 2008

Sagan Symposium 2009 Nov 12 -13 ----

Imaging Stars and Planets with the CHARA Array

First Astrometric Orbit for β Lyr

What's Next - Direct Imaging of Hot Jupiters?

What can interferometry add to the science of hot Jupiters?

1). Spectral information in the near-IR

- Estimate global energy budget of hot Jupiters

What can interferometry add to the science of hot Jupiters?

- 1). Spectral information in the near-IR
 - Estimate global energy budget of hot Jupiters
- 2). Day/night flux variation and flux calibration for non-transiting hot Jupiters
 - Break down model degeneracy
- 3). Obtain inclination and determine accurate mass for non-transiting hot Jupiters
 - Interferometers can see hot Jupiter systems as high contrast binaries

Best Candidates

Imaging Stars and Planets with the CHARA Array

Closure phase simulation

Precision requirement: < 0.18° for the highest resolution channel

Sagan Symposium 2009 Nov 12 -13 ---

Imaging Stars and Planets with the CHARA Array

Observation of v And

Improvements

- Analysis Method:
 - Orbital parameters: i, Ω
 - Day/night flux variation: amplitude, phase
 - Closure phase offset
- \Rightarrow Combined solution of multiple channels and nights

Improvements

- Calibration:
 - closure phase drifts due to polarization or dispersion (under investigation)

Closure phase as a quadratic surface function of Altitude and Azimuth

Imaging Stars and Planets with the CHARA Array

After new calibration

Imaging Stars and Planets with the CHARA Array Preliminary upper limit for Ups And

Improvements

- Throughput
- Efficiency
- Noise Regime
- Calibration
- Data analysis

All improvements add together: $\Rightarrow 6x - 10x S/N$

Sagan Symposium 2009 Nov 12 -13 ----

Summary

- First images of main sequence stars besides Sun
 - Temperatures not consistent with von Zeipel law, suggesting differential rotation
 - Interferometry combined with spectroscopy can weigh stars in new way
 - Knowledge of geometry will allow precise calibration of upper main sequence for first time
- Interacting binaries now accessible
 - Physics of accretion disks in close binaries
- Directly detecting hot Jupiters underway!

Imaging Stars and Planets with the CHARA Array

Backup slides

Sagan Symposium 2009 Nov 12 -13 ----

Modeling Altair

- Construct 3D sphere + apply Roche- von Zeipel model $(T \propto g^{\beta})$ + Kurucz limb darkening
- Fast algorithm: more accurate, faster

New Method to Measure Mass of Single Star

- Interferometer measures star's oblateness & inclination angle
 - This distortion does not tell us the stellar mass directly
- Spectroscopy can determine projected surface velocities (v sin i)
- Together: we can measure the mass of the star
 - Depends on some assumptions, such as uniform internal rotation, and proper model of spectral line profiles

Test Case: Rasalhague (α Oph)

- A well-known binary
 - Gatewood et al. 2005 determine primary mass 2.8 +/- 0.2 Msun
- Interferometer-determined geometry and v sini suggests lower mass ~2.1 Msun
- New AO imaging will determine precise mass as a check of the Oblateness Method
 - Work in progress..

Imaging Stars and Planets with the CHARA Array Astronomy

Closure phase simulation

Altair

Parameters	β Fixed	β Free
Inclination (degs)	62.7 ± 1.6	56.8 ± 2.2
Position Angle (degs)	-61.7 ± 1.2	$\textbf{-61.9} \pm 1.0$
$T_{pole}(K)$	8650 ± 150	8370 ± 140
$ m R_{pole}~(m R_{\odot})$	1.662 ± 0.005	1.632 ± 0.011
(mas)	1.503 ± 0.005	1.476 ± 0.010
T _{eq} (K)	6790 ± 110	6810 ± 70
$ m R_{eq}~(m R_{\odot})$	2.023 ± 0.011	2.029 ± 0.009
(mas)	1.830 ± 0.010	1.835 ± 0.008
ω	0.902 ± 0.005	0.924 ± 0.005
β	0.25 (Fixed)	0.188 ± 0.011
Model V Mag	0.765	0.765
Model H Mag	0.221	0.217
Model v $\sin i$ (km/s)	241	239
Reduced χ^2 :		
Total	1.81	1.35
Closure Phase	2.16	1.70
Vis^2	1.50	1.09
Triple Amp	2.12	1.58

Rasalhague

Table 1: Best-fit parameters for Alp Oph			
Parameters	Standard model ($\beta = 0.25$)		
Inclination (degs)	87.70 ± 0.43		
Position Angle (degs)	-53.88 ± 1.23		
T _{pol} (K)	9300 ± 150		
\mathbf{R}_{pol} (\mathbf{R}_{Ω})	2.390 ± 0.014		
T _{eg} (K)	7460 ± 100		
\mathbf{R}_{eq} (\mathbf{R}_{Ω})	2.871 ± 0.020		
(k)	0.885 ± 0.011		
Model V Magnitude	2.086		
Model H Magnitude	1.66		
Model v <i>sini</i> (km/s)	275		
Total χ_{F}^{2}	0.91		
$CP \chi^2_{\nu}$	1.33		
$\operatorname{Vis}^2 \chi_F^2$	0.72		
T3amp χ^2_{ν}	0.81		

 $^{\circ}\mathrm{V}$ magnitude from literature: 2.086 \pm 0.003

⁸H magnitude from Literature: 1.66 ± 0.03

Alderamin

Table 3.3. Best-fit and physical parameters of α Cep				
Model Parameters	Standard $(\beta=0.25)$	Non-standard $(\beta$ -free) [*]		
Inclination (degs)	64.91 ± 4.11	55.70 ± 6.23		
Position Angle (degs)	-178.26 ± 4.10	-178.84 ± 4.28		
T_{pol} (K)	8863 ± 260	8588 ± 300		
R_{pol} (R_{\odot})	2.199 ± 0.035	2.162 ± 0.036		
T_{eq} (K)	6707 ± 200	6574 ± 200		
R_{eq} (R_{\odot})	2.739 ± 0.040	2.740 ± 0.044		
ω	0.926 ± 0.018	0.941 ± 0.020		
β	0.25 (fixed)	0.216 ± 0.021		
Model V Magnitude ^a	2.45	2.45		
Model H Magnitude ^b	1.92	1.91		
Model v $\sin i$ (km/s)	237	225		
Total χ^2_{ν}	1.21	1.18		
$Vis^2 \chi^2_{\nu}$	0.79	0.80		
$CP \chi^2_{\nu}$	1.43	1.27		
T3amp χ^2_{ν}	1.71	1.76		
Other Physical Parameters				
True $T_{eff}(K)$	7690 ± 150	7510 ± 160		
True Luminosity (L_{\odot})	20.1 ± 1.6	18.1 ± 1.8		
Apparent $T_{eff}(K)$	-	7510		
Apparent Luminosity (L_{\odot})	-	17.9		
$Mass (M_{\odot})^{c}$	-	1.92 ± 0.04		
Age (Gyrs) ^c	-	0.99 ± 0.07		
$[Fe/H]^{d}$		0.09		
Distance $(pc)^e$		14.96		

Sagan Symposium 2009 Nov 12 -13 ----

Imaging Stars and Planets with the CHARA Array

Sagan Symposium 2009 Nov 12 -13 ----

Imaging Stars and Planets with the CHARA Array Astronomy

Rapid Rotation with Interferometry

- First measurement: Altair (α Aql) by Van Belle et al. 2001
- 14% longer in one direction than another

- Vega rotating at ~91% of breakup
 - NPOI (Peterson et al 2005)
 - CHARA (Aufdenberg et al 2006) Sagan Symposium 2009 Nov 12 -13 ----