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Context

• Terrestrial Planet Finder

• NASA is interested in new strategies consistent with current budget

‣ Mission concept studies

‣ Exoplanet Community Report

‣ Possibility of a “medium-class” mission (~$700M)

• Discovery proposal 3 years ago (Cash et al.)

• Medium mission

‣ “small coronagraph” e.g. PECO 1.4 m

‣ occulter possible if host telescope available

‣ small interferometer e.g. FKSI

3
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New Worlds Probe (NWP) Concept

4

‣ Science capabilities given JWST instruments (what can we detect? biomarkers?)

‣ Observing time, available stars, Field of Regard, DRM

‣ Operations (alignment, planning & scheduling, target acquisition, overheads)

‣ Starshade itself

~50,000-70,000km

50-70 m diameter
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External Occulters: early ideas

• Lyman Spitzer, in American Scientist 1962

- “This method involves the use of a large occulting disk far in front of the telescope 
to reduce the light from the star.”

- “In the same way that the diffracted light from a telescope mirror can be reduced 
by a smooth reduction of the reflectivity towards zero at the edge, the shadow 
behind an occulting disk can be made much blacker if the transparency of the 
disk varies smoothly at the edge of the disk rather than abruptly; a reduction of 
intensity within the shadow by an order of magnitude was achieved with the use 
of an occulting disk edged with sharp spikes”.

5
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External Occulters: early ideas

6

• Gordon Woodcock 1974

Thursday, November 12, 2009



External Occulters: early ideas

7
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External Occulters

Umbras Boss

Plain 
occulter

Star shaped occulter (approximation 
of the continuous apodization)

Apodized 
occulter

Starshaped

Much better 
shadow

Shadow is not optimum, 
spot of Arago-Poisson

Web Cash: analytical functions, e.g. ‘hypergaussian’

Bob Vanderbei: optimal numerical solutions

2000~2002
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Parameters for the Starshade

• Define a geometric inner working angle (IWA)

‣ IWA ~ D/z

‣ Shadow properties (Fresnel propagation) ~ D2/λz

• there is a minimum distance & size for a given set of IWA, contrast, bandwidth 
and other constraints. 

• occulter diameter (and distance) increase with 

‣ decreasing IWA

‣ telescope diameter

‣ bandwidth (easier on the blue side than red side)

‣ contrast

500 1000

500

1000

500 1000

500

1000

star

planet
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James Webb Space Telescope

• Observatory

‣ 6.5 m, segmented

‣ modest optical quality (diffraction limited at 2 microns, SR=80%)

‣ Imaging and spectroscopy from 0.6 to 25 microns

• Near Infrared Camera (NIRCam)

‣ 2 instruments: short arm (0.6-2.3 μm) and long arm (2.4-5.0 μm)

‣ several filters, broadband and medium band

• Near Infrared Spectrograph (NIRSpec)

‣ 0.6-5.0 μm,  R=40-100 (prism) and R=1000

• Mid Infrared Imager (MIRI)

• Tunable Filter Imager (TFI)

10
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NWP: Science Goals Summary

• Can we design an occulter to image and characterize and Earth-like planet?

‣ contrast goal 1e-10

‣ characterize habitability & possible biomarkers, near infrared: O2, H2O, CO2, CH4

‣ possibility of thermal emission as well? (radius and temperature)

• Characterization of giant planets is interesting in the near infrared

• Imaging & Spectroscopy from 0.6 to 1.7 μm covers large science program

Turnbull et al.

11

Marley et al.
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NWP: Science Goals Summary

• 1) Find and characterize planetary systems including terrestrial planets in the 
habitable zone

‣ 20 - 30 nearby extrasolar systems can be observed and mapped

‣ If ηearth is >0.5, there is a high probability of observing ~5 terrestrial planets

‣ With ~3 revisits each, we can characterize their atmospheres, and establish the 
terrestrial planet’s habitable zone residency. Rotation? Biomarkers? Oxygen?

• 2) Characterize known RV planets (Jupiters, Neptune, super Earths) 

‣ Mass: disentangle m sin(i) with inclination measurement

‣ Atmospheric composition, gravity, temperature & radius if emitted light can be 
measured 

• 3) Determine brightness and structures of exozodiacal disks.

NWP Can Perform a Variety of Exoplanet Science
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Large-separation RV planets

13

Table 1. Known radial velocity planets for which the angular separation is larger than 60mas (here the angular separation
is calculated using the semi-major axis). The contrast is calculated for a separation corresponding to the semi-major
axis, and assuming quadrature. There are 18 planets for which the separation is larger than 120mas, respectively 23 for
100mas, 31 for 90mas, 38 for 80mas, 44 for 70 mas, and 57 for 60mas. There are 41 RV planets for which the maximum
elongation a(1 + e) > 100mas. Data from The Extrasolar Planets Encyclopaedia;28

Planet Name M sin(i) period sma excentricity separation contrast
Epsilon Eridani b 1.6 2502 3.4 0.70 1.059 2.97E-09
GJ 832 b 0.6 3416 3.4 0.12 0.688 2.95E-09
55 Cnc d 3.8 5218 5.8 0.03 0.443 1.02E-09
HD 160691 c 3.1 2986 4.2 0.57 0.273 1.96E-09
Gj 849 b 0.8 1890 2.4 0.06 0.267 6.17E-09
HD 190360 b 1.5 2891 3.9 0.36 0.247 2.22E-09
47 Uma c 0.5 2190 3.4 0.22 0.243 2.97E-09
HD 154345 b 0.9 3340 4.2 0.04 0.232 1.94E-09
Ups And d 4.0 1275 2.5 0.24 0.186 5.41E-09
HD 62509 b 2.9 590 1.7 0.02 0.163 1.19E-08
HD 39091 b 10.4 2064 3.3 0.62 0.160 3.15E-09
14 Her b 4.6 1773 2.8 0.37 0.153 4.44E-09
47 Uma b 2.6 1083 2.1 0.05 0.151 7.66E-09
Gamma Cephei b 1.6 903 2.0 0.12 0.148 8.16E-09
HD 217107 c 2.5 4210 5.3 0.52 0.142 1.23E-09
HD 89307 b 2.7 3090 4.2 0.27 0.126 1.98E-09
HD 10647 b 0.9 1040 2.1 0.18 0.121 7.73E-09
HD 117207 b 2.1 2627 3.8 0.16 0.115 2.39E-09
HD 181433 d 0.5 2172 3.0 0.48 0.115 3.79E-09
HD 70642 b 2.0 2231 3.3 0.10 0.114 3.13E-09
HD 128311 c 3.2 919 1.8 0.17 0.106 1.10E-08
GJ 317 b 1.2 693 1.0 0.19 0.104 3.78E-08
HD 216437 b 2.1 1294 2.7 0.34 0.102 4.68E-09

outer working angle, i.e. absence of field of view limit for the high-contrast zone, NWP will provide a complete
picture of the architecture of planetary systems with dust and planets. Observing exozodi is crucial, both for
its science return and as a source of background noise for future exoplanet exploration.17 The distribution of
the exozodiacal dust is a tracer of the systems orbital dynamics, where planetary orbital resonances create gaps
and enhancements in the dust. Tiny planets, too small to be seen directly, should leave distinct marks as well.
Imaging the exozodi gives us the inclination of the systems ecliptic plane, which can provide clues to the planets
orbit from a single image.

Currently known debris disks are 102 to 104 times brighter than the level of an equivalent solar system
zodiacal disk.29 Zodiacal and exozodiacal dust create background flux that is mixed with the planet signal in
both images and spectra. Even if nearby systems have exozodi levels no greater than the Solar System level,
zodiacal and exozodiacal background will be the largest source of noise for most targets. Unfortunately, we know
very little about exozodi levels in other systems. Measuring them is crucial to the future of direct exoplanet
observations.17 The surface brightness of the exozodi is the main determinant in how long it takes to detect an
exoplanet buried in that system; the exposure time required to detect a planet is proportional to the exozodi
brightness. Such background-limited observations strongly favor telescope diameter, where the signal to noise
ratio is proportional to D4.

3. INSTRUMENT CAPABILITIES AND CONSTRAINTS

Both science goals and starshade design depend on existing instrument capabilities and constraints from the
observatory, and it is different than designing a mission from the beginning. We develop this analysis under the
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NWP: Imaging

• Imaging capabilities with NIRCam

‣ Several Broadband filters and medium band filters

‣ SNR=10 detection of Earth at 10pc (solar-system zodiacal disk) in:

- 23 hours with F070W

- 7.3 hours with F090W

- 5.8 hours with F115W

- 11 hours with F200W

‣ Super Earth (5 Earth-mass, same density & albedo)

- 2.7 hours with F070W

- 0.85 hours with F090W

- 0.7 hours with F115W

- 1.3 hours with F200W

‣ Emitted light detection at 4-5 microns (with relaxed IWA 200-250 mas and closer 
occulter - If thermal emission from occulter is acceptable)

14
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NWP: Spectroscopy

• Spectroscopic capabilities with NIRSpec

‣ Use a target acquisition filter to reduce detector sensitivity range.

- F140W (0.8-2.0 μm) most interesting for science

- F110W (1.0-1.2 μm) for small starshade

‣ SNR=5 spectrum of Earth at 10pc (solar-system zodiacal disk) in:

- 3x105 between 1.0 and 1.7 micron

- 1.3x106 below 1.0 micron

- resolution R=30-50

‣ SNR=5 spectrum of Super-Earth at 10pc (5ME, solar-system zodiacal disk) in:

- 4x104 between 1.0 and 1.7 micron

‣ Super Earth O2 detection in 106+ s at R~100 with grating

‣ Giant planet R=1000 spectrum in 5x105 to 106s

‣ R=2700 possible on bright young giants?
15

Thursday, November 12, 2009



Red Leak

• NIRCam’s detector is sensitive up to 2.5 μm 

‣ smaller range but imaging

• NIRSpec’s detector is sensitive up to 5.0 μm, filter substrate up to 2.7 μm

‣ larger range but dispersed spectrum

16
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Available filters

• NIRSpec “Target Acquisition” filters

‣ F140X :  0.8 μm < λ < 2.0 μm

‣ F110W: 1.0 μm < λ < 1.2 μm

- F140X has a red bump of about 7-8% at ~3 micron

• NIRCam filters

‣ F070W, F090W, F115W, F150W

• Baseline design: 

‣ 0.6/0.8 to 2.0 micron (overlap NIRcam & NIRSpec range)

‣ core science up to 1.7/1.8 μm (relax contrast beyond)

‣ constraints at 2.5 μm & 5.0 μm for NIRcam & NIRSpec

17
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Starshade optimization

• Example of NIRCam filter F090W + detector + dichroic

‣ similar transmissions for other filters (not final parts)
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Starshade optimization

• weighted optimization 

‣ NIRcam constraint at 2.5 micron (overall suppression of 1e-10

‣ Contrast relaxed beyond 1.7 μm (science) up to 1e-6 at 2.5 μm (red leak)

19
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Starshade optimization

• Overall on-axis transmission including starshade + OTE + detector + dichroic 
+ actual filter

• The contribution form the star leakage is negligible in the error budget (perfect 
starshade)
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NWP Simulated Solar System Detection

• Sun-Earth at 10pc with zodiacal disk

‣ Simulation for F090W for a 7h exposure

‣ Includes perfect starshade 70m (tip-tip) at 72193km 

‣ Actual F090W transmission + starshade leak up to 2.5 μm

Earth at 10 pc, NIRCam F090W �Nyquist�Earth at 10 pc, NIRCam F090W, ExpTime�7h

Thursday, November 12, 2009



Earth Spectrum with NIRSpec

• SNR=5 spectrum of Earth at 10pc in 3x105s with prism (R=30-50)

‣ does not include effects of out-of-band filter & varying sensitivity
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Sample NWP Science Exposure Time Allocation

• Plausible total exposure time: 7-9%  (~107s) - Total slews ~60-80

‣ Planetary system architecture: deep search of 10 best RV systems 

- Detect outer planets, terrestrial planets, Probe habitable zone

- Detect zodiacal dust and planet(s)-dust interaction and structures

‣ Deep survey of 20 nearby stars

- Probe habitable zone for terrestrial planets

- Exo-Zodiacal dust brightness, structure and color/spectroscopy

‣ Shallow revisit of known 20 best RV systems 

- Two visits to disambiguate inclination in RV detection (M.Sin i), test coplanarity 

‣ Low-resolution spectroscopy of 20-30 giants and Neptunes

‣ High-resolution spectroscopy 10 giant planets (2-3 mature, 6-9 young)

‣ Low-resolution spectroscopy of 3-5 terrestrial planets 
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Sample NWP Science Exposure Time Allocation

• Total exposure time 7-9% of mission time (107s)

‣ 1/3 imaging

‣ 2/3 spectroscopy

24
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Conclusions

• JWST + starshade excellent characterizer, short exposure times, high-
resolution possible on brighter planets

• Limited for detection (max observing time ~ 7-9%)

• not limited by imperfect detector in most observing modes, near infrared is 
interesting

• better estimation of spectroscopic capabilities in progress

25
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