Long-baseline interferometry study of the symbiotic star CH Cyg

2009 Sagan/Michelson Fellows Symposium

13/11/2009

Ettore Pedretti Scottish Universities Physics Alliance School of Physics and Astronomy University of St Andrews

Collaborators

J. D. Monnier, University of Michigan
N. D. Thureau, University of St Andrews
Ming Zhao, Jet Propulsion Laboratory
R. Millan-Gabet, NASA Exoplanet Science Institute
W. A. Traub , Jet Propulsion Laboratory
S. Ragland , Keck Observatory
J-P. Berger, Observatoire de Grenoble
F. P. Schloerb, University of Massachusetts
N. P. Carleton, Center for Astrophysics
M. G. Lacasse, Center for Astrophysics

What you are up against !!

Baltic Astronomy, vol. 16, 1–9, 2007.

SYMBIOTIC STARS: CONTINUALLY EMBARRASSING BINARIES

J. Mikołajewska

N. Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw, Poland

Received: 2007 January 15

Abstract. This paper aims at presenting the state-of-the-art in understanding of symbiotic binaries. In particular, we discuss their basic parameters, the mechanisms of mass loss and accretion and the role of these processes in the observed activity of symbiotic systems.

Key words: stars: binaries: symbiotic – stars: fundamental parameters – stars: mass loss

1. INTRODUCTION

4

- The only type of stellar variability currently not understood.
- 25-30% red giant stars show LSP, but modulation depends on luminosity of star. Maybe as high as 50%.
- LSP follow PL relation, Wood sequence D (Wood et al., 1999).

2

logP

2.5

з

1.5

1

Soszynski et al. (2007)

Credits: Frank Fekel.

The IOTA combiner

IOTA 3-Telescope Fringes

Log of observations

Date	Mean	Phase	Telescope	λ	$\Delta\lambda$	Calibrator
(UT)	JD			(μm)	$(\mu { m m})$	names
2004Apr23	2453119	0.40	IOTA , A35–B15–C10	1.51	0.090	α Lyr, α Aql
2004 Apr 24	2453120	0.40	IOTA , A35–B15–C10	1.64	0.100	α Lyr, α Aql
$2004 \mathrm{Apr}25$	2453121	0.40	IOTA , A35–B15–C10	1.64	0.100	α Lyr, α Aql
$2004 \mathrm{Apr}26$	2453122	0.40	IOTA , A35–B15–C10	1.78	0.090	α Lyr, α Aql
$2004 \mathrm{Apr} 29$	2453125	0.41	IOTA , A35–B15–C10	1.78	0.090	α Lyr, ρ Ser
$2004 \mathrm{Apr} 30$	2453126	0.41	IOTA , A35–B15–C10	1.78	0.090	α Lyr, ν Hya
2004May 01	2453127	0.41	IOTA , A35–B15–C10	1.78	0.090	α Lyr, α Aql
2004 A pr 09	2453105	0.38	Keck A, Golay mask	1.64	0.025	α Lyr
2005Jun 06	2453528	0.94	IOTA , A35–B15–C10	1.66	0.300	α Lyr
2005Jun08	2453530	0.95	IOTA , A25–B15–C10	1.66	0.300	$lpha \ { m Lyr}$
2006 Apr 24	2453850	0.37	IOTA , A35–B15–C10	1.66	$0.043 imes 7^1$	α Lyr, β Her
2006Apr30	2453856	0.38	IOTA , A35–B15–C10	1.66	$0.043 imes 7^a$	α Lyr, β Her
2006May 01	2453857	0.38	IOTA , A35–B15–C10	1.66	$0.043 imes 7^a$	α Lyr, β Her
2006May 02	2453858	0.38	IOTA , A35–B15–C10	1.66	$0.043 imes 7^a$	α Lyr, β Her

SUPA

Calibrator	Spectral	Adopted UD	Reference(s)
name	type	(mas)	
α Lyr	A0V	$3.22{\pm}0.01$	Absil et al (2006)
$eta \mathrm{Her}$	G7IIIa	$3.40{\pm}0.03$	This work
ho Ser	K5III	$3.28{\pm}0.04$	Borde et al (2002)
$lpha { m Aql}$	m A7V	$3.46{\pm}0.04$	Van Belle et al (2001)

Binary search around CH Cyg

SUPA

18

Binary parameters

Parameters	Circular	Elliptical
	solution	solution
	Radial velocity	
$P ~({ m days})$	$749.8{\pm}2.3$	$750.1{\pm}1.3$
$T0 ({ m HJD})$	2446823.2 ± 7.7	$2447293.5{\pm}12.9$
ω (°)	0.0	$229.5{\pm}7.7$
e	0.0	$0.330 {\pm} 0.041$
$K ~(\mathrm{Km \ s^{-1}})$	$2.87 {\pm} 0.13$	$2.87 {\pm} 0.13$
$\gamma \text{ (Km s}^{-1})$	-59.93 ± 0.10	$-59.91{\pm}0.09$
a sin i (Km)	$2.96 \text{x} 10^7 \pm 0.29 \text{x} 10^7$	$2.79 \mathrm{x} 10^7 \pm 1.23 \mathrm{x} 10^7$
$f(m)~({ m M}_{\odot}~)$	$0.00018 {\pm} 0.0002$	$0.00015 {\pm} 0.0002$
	Interferometry	
. (-)		
i (°)	$138{\pm}10$	146 ± 6
Ω (°)	347 ± 7	337 ± 8
$a \pmod{\max}$	$7.1 {\pm} 0.3$	$6.3 {\pm} 0.3$

	Der	rived p	baram	eters		
${f M_2}~({f M_\odot})$) 0.1	0.2	0.3	0.4	0.5	0.6
		Circul	ar orb.	it		
\mathbf{M}_1 (\mathbf{M}_{\odot}) 0.3	0.9	1.8	2.8	3.9	5.2
$\mathbf{R}_1 \; (\mathbf{R}_{\odot})$	156	221	270	312	349	382
$\mathbf{L}_1~(\mathbf{L}_{\odot}~)$	2037	4073	6110	8146	10183	12219
a (AU)	1.2	1.7	2.0	2.3	2.6	2.9
D (pc)	166	235	288	332	371	407
		Ellipti	cal orb	oit		
$\mathbf{M}_1 ~ (\mathbf{M}_{\odot})$) 0.2	0.7	1.4	2.2	3.2	4.2
$\mathbf{R}_1 \ (\mathbf{R}_{\odot})$	165	233	285	330	369	404
$\mathbf{L}_1 \ (\mathbf{L}_{\odot} \)$	2267	4534	6801	9068	11335	13601
a (AU)	1.5	1.6	1.9	2.2	2.5	2.7
D (pc)	143	248	304	351	392	430

Non radial-oscillations

22

- Simple models explain the asymmetries detected through infrared interferometry in the S-type symbiotic star CH Cyg.
- We do not detect significant change of angular size rendering radial pulsation a less likely explanation for the 2.1-yr variability.
- We detect a large change in brightness across the M~giant and/or a low mass companion in close orbit around the star.
- Combined effect of pulsation and low-mass companion could explain the behaviour of the radial-velocity curves and the asymmetries detected in closure-phase data?

- "A dusty torus around the luminous young star LkHa 101" by Peter Tuthill, John Monnier, and William Danchi Volume 409, February 22, 2001
- Michelson Interferometry with the Keck I Telescope : Tuthill, P. G.; Monnier, J. D.; Danchi, W. C.; Wishnow, E. H.; Haniff, C. A. 2000, Publications of the Astronomical Society of the Pacific, 112, 555-565

