Observation of Warm Gas in Pre-planetary Disks: Interpreting their SEDs

Courtesy of NASA/JPL-Cal Tech

Courtesy of NASA/JPL-Cal Tech

Sean Brittain, Matt Troutman (Clemson University), Joan Najita (NOAO), John Carr (NRL)

Sagan/Michelson Fellows Symposium, November 2009

SEDs of Transition Objects

Najita et al 2007

Gas in Transitional Disks

Studying gas in disks

- 1. Excitation of gas
- 2. Kinematic structure of gas lines
- 3. Spatial structure of gas lines

The Excitation of CO

Does the non-detection of CO emission indicate that the gas is missing or that it is not sufficiently excited to be seen?

- 1) Temperature structure of disk
- 2) Excitation mechanism of gas

The Excitation of CO

Notation: $Aw\rho = B \not= g$ $g = \frac{\pi e^2}{mc^2} \lambda^2 f_{ij}(\pi F_{\lambda}) \text{ photons } s^{-1} \text{ molecule}^{-1}$ $\dot{n}_{v=1} = -n_X^{v=1} g_{X-A}^{1-3} + n_A^{v=3} \left(g_{A-X}^{3-1} + A_{A-X}^{3-1}\right) = 0$ $\dot{n}_{v=2} = -n_X^{v=2} g_{X-A}^{2-3} + n_A^{v=3} \left(g_{A-X}^{3-2} + A_{A-X}^{3-2}\right) = 0$ $\frac{n_1}{n_2} \approx \frac{g_{A-X}^{3-1}}{g_{A-X}^{3-2}} \approx \frac{F_{A-X}^{3-1}}{F_{A-X}^{3-2}} \propto e^{-\theta/T}$

Krotkov et al. 1980

UV Fluorescence

Brittain et al. 2007

T _{eff} ~10,000 K	T _{eff} ~10,000 K
~10Myr	~5Myr
T(CO) = 1000 K	T(CO) = 200 K

Grady et al. 2005

A. Weinberger, E. Becklin (UCLA), G. Schneider (Univ. of Arizona), and NASA.

Kinematic Structure of Emission Lines

CO Line Profiles

- R_{in}(CO)=9 AU
- R_{out}(CO)~50 AU
- T(r)=200 (r/9AU)^{-0.25} K

Lewis et al. 2009

- R_{in}(CO)=13 AU
- R_{out}(CO)~100 AU
- T(r)=1400 (r/13AU)^{-0.35} K

T _{eff} ~10,000 K	T _{eff} ~10,000 K
~10Myr	~5Myr
T(CO) = 1000 K	T(CO) = 200 K
R _{in} =13 AU	R _{in} =9 AU

Grady et al. 2005

A. Weinberger, E. Becklin (UCLA), G. Schneider (Univ. of Arizona), and NASA.

T _{eff} ~10,000 K	T _{eff} ~10,000 K
R _{in} =13 AU	R _{in} =9 AU
~10Myr	~5Myr
T(CO) = 1000 K	T(CO) = 200 K
L _{PAH} /L _{UV} =6.4E-3 ^a	L _{PAH} /L _{UV} =5.3E-4 ^a

Grady et al. 2005

A. Weinberger, E. Becklin (UCLA), G. Schneider (Univ. of Arizona), and NASA.

Spatial Structure of Emission Lines

(B39-Troutman et al., B41-van der Plas et al.)

Gas in Transitional Disks

Conclusions

- 1. CO emission is a sensitive probe of warm gas in the inner disk
- 2. Evidence that temperature of CO set by photoelectric heating.
- 3. Spatially resolved PSF of HD100546 and HD141569 confirm the excitation modeling.
- 4. Evidence suggests the presence of a massive planet in the inner disk around HD100546
- 5. Does the inner disk reflect an OH-rich/CO poor region?