

SIM'S SEARCH FOR PLANETS ORBITING WHITE DWARFS

SIM Science Study

John P. Subasavage

CURRENT EXOPLANET CENSUS

Technique	# Planets	
RV, astrometry, transit	292	
Microlensing	7	
Imaging	5	
Timing	5	

http://exoplanet.eu

9/25/2008

CURRENT EXOPLANET CENSUS

Technique	# Planets	
RV, astrometry, transit	292	
Microlensing	7	
Imaging	5	
Timing	5	

http://exoplanet.eu

Total

309

9/25/2008

CURRENT EXOPLANET CENSUS

Technique	# Planets		
RV, astrometry, transit	292		
Microlensing	7		
Imaging	5		
Timing	5		

http://exoplanet.eu

Total309Total orbiting WDs1

9/25/2008

WHY WDS ARE BAD

- Relatively faint
- Poor spectral features
 - Few broad absorption lines
 - No absorption
- Outlook for life is bleak
 - Catastrophic transformation
 - Miniscule habitable zone

WHY WDS ARE GOOD

- Very populous per unit volume
- Span a wide range of main-sequence progenitors (up to $\sim 8 M_{\odot}$)
- Less massive than progenitors (better for astrometric detections)
- Atmospherically stable (in general)

GOAL OF THIS STUDY

- Identify a subset of "ideal" WDs that would be best suited for planetary detections by SIM using differential astrometry mode
- Factors to consider
 - 1. Distance to the WD
 - 2. Brightness of the WD
 - 3. Mass of the WD
 - 4. Brightness of the reference field
 - Proximity of the reference field to the WD

5.

PRELIMINARY CONSTRAINTS

Astrometric accuracies ≤ 5 µas per visit
WD V magnitudes < 15.0
WD distances < 20 pc

9/25/2008

PRELIMINARY CONSTRAINTS

Astrometric accuracies ≤ 5 µas per visit
WD V magnitudes < 15.0
WD distances < 20 pc

Planetary parameter sensitivities
Planet masses ≥ 10 M_⊕ (Neptunes)
Planet periods between 1 – 10 years

PARAMETER LIMITS

9/25/2008

LATEST 25 PC WD SAMPLE

Binned in 2 pc steps

 110 WD systems previously known (white)

 34 WD systems with new CTIOPI parallaxes (shaded)

9/25/2008

NEARBY WD MAGNITUDES

9/25/2008

NEARBY WD MAGNITUDES

9/25/2008

REPRESENTATIVE PARAMETER SETTINGS

V Mag	Target Exposure	Reference Exposure	No. of Visits	Single-Epoch Accuracy	Mission Time
11 th	80 sec	30 sec	100	3.88 µas	19.4 hrs
12 th	100 sec	30 sec	90	4.08 µas	20.0 hrs
13 th	120 sec	30 sec	80	4.44 µas	20.0 hrs
14 th	170 sec	40 sec	60	4.98 µas	20.0 hrs
15 th	360 sec	60 sec	32	4.99 µas	20.0 hrs

A (B - V) color index = 0.4 (target & refs)
 Reference V mag = 12.0
 Five reference stars with separation = 1.0°
 One chop cycle

9/25/2008

9/25/2008

9/25/2008

15 arcmin

9/25/2008

15 arcmin

<u>30 arcmin</u>

9/25/2008

- Science target V magnitude = 11.5
- Reference target V magnitude = 10.0
- Target-reference sky separation = 8 arcmin
- Number of reference targets = 6
- Science target integration time = 60 sec
- Reference target integration time = 20 sec
 - Number of visits = 100

- Science target V magnitude = 11.5
- Reference target V magnitude = 10.0
- Target-reference sky separation = 8 arcmin
- Number of reference targets = 6
- Science target integration time = 60 sec
- Reference target integration time = 20 sec
 - Number of visits = 100
 - DA precision per visit = $2.6 \mu as$
- Total mission time = 18.3 hrs

9/25/2008

9/25/2008

SUMMARY

 SIM will be the most sensitive astrometric instrument available and thus, capable of detecting low-mass planets orbiting WDs
 This study will:

- Evaluate the nearby WD sample
- Identify ~25 "ideal" candidates for planet searches via SIM

SUMMARY

 SIM will be the most sensitive astrometric instrument available and thus, capable of detecting low-mass planets orbiting WDs
 This study will:

- Evaluate the nearby WD sample
- Identify ~25 "ideal" candidates for planet searches via SIM

• Hopefully, we'll find planets around WDs!