

Z

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

SIM Data Analysis [How to create calibrated regularized delays]

David Murphy and David Meier 24-September-2008

NORTHROP GRUMMAN

Space Technology

09/24/08 - 1

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

- SIM observes in tiles [which have 15° diameter]
- Each tile lasts \sim 1 hr and there are \sim 45,000 tiles in a 5-yr mission
- \sim 1300 Grid stars must be observed so that spacecraft calibration parameters can be determined:
 - single-tile: constant term and 2 baseline orientations
 - multi-tile: baseline-length and field-dependent errors (FDEs)

Example tile:

- G-stars in green
- W-target in white
- Guide1 star in red [at center of field]
- Baseline orientation in cyan

Note: must have at a least 3 grid stars observed per tile with one observed twice so that linear drift effects can be Removed. Typically have 6-7 Grid stars in a tile

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

What is a regularized delay (d_{reg}) ?

- Instantaneous raw delay: $d_{raw}(t)$
 - SIM measures delay every *science readout time* (e.g., every ~0.1s) on an instantaneous baseline

 $d_{raw}(t) = d_{delay_line}(t) + \eta_{white_light}(t)$

- The baseline orientation is affected by attitude drift and control
- Because the science baseline is not fixed in space, delays measured on it cannot be immediately and coherently averaged
- Instantaneous regularized delay: $d_{reg}(t)$
 - Each raw delay is "regularized" (corrected) to be that which would have been measured on a fiducial ("regularized") baseline <u>b</u>_{reg} that remains <u>fixed in space for a</u> <u>tile:</u>

$$d_{reg}(t) = d_{raw}(t) + [\underline{\mathbf{b}}_{reg} - \underline{\mathbf{b}}_{est}(t)] \cdot \underline{\mathbf{s}}$$

where

- $\underline{\mathbf{b}}_{est} = \underline{best estimate of the science baseline at time t}$ using on-board metrology and guide star-determined orientation (it might be the best but it is still incorrect!)
- <u>s</u> = a-priori source position at time t
- Averaged regularized delay: d_{reg}
 - These regularized delays now can be averaged over the entire integration time (e.g., ~15 s to ~1 hr), which is the main uncalibrated science data product of SIM

 $d_{reg} = \langle d_{reg}(t) \rangle$

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology

Delay equation fundamentals: 1

• Measured observable for each object for each $\sim 15s-\sim 1hr$ observation is regularized delay d_{reg} :

 $d_{reg}^{reg} = (\underline{\mathbf{b}}_{reg} + \underline{\Delta \mathbf{b}}) \cdot (\underline{\mathbf{s}} + \underline{\Delta \mathbf{s}}) + C + FDE + ZE + \eta$

• where:

- $\underline{\mathbf{b}}_{reg}$ = regularized baseline (varies from tile to tile but is fixed for a tile)
- $\underline{\mathbf{b}}_{reg} + \underline{\Delta \mathbf{b}}$ = average true baseline (varies from tile to tile but is fixed for a tile)
- \underline{s} = a-priori source position (varies from source to source and time)
- $\underline{s} + \underline{\Delta s}$ = actual source position (varies from source to source and time)
- \mathbf{C} = constant term (varies from tile to tile but is fixed for a tile)
- FDE = field-dependent errors (varies with object location in tile and time)
- ZE = sky-dependent zonal errors (varies with location in the sky)
- η = random noise
- Fundamental astronomical quantity of interest is $\underline{\mathbf{b}}_{reg}$. $\underline{\Delta s}$:

$$\underline{\boldsymbol{b}}_{reg}.\ \underline{\boldsymbol{\Delta}}\underline{\boldsymbol{s}} = \boldsymbol{d}_{reg} - \underline{\boldsymbol{b}}_{reg}.\underline{\boldsymbol{s}}\ - <\underline{\boldsymbol{\Delta}}\underline{\boldsymbol{b}} > .\underline{\boldsymbol{s}}\ - <\!\!C\!\!>\ - <\!\!FDE\!\!> - <\!\!ZE\!\!> - \eta$$

- where <x> = calibration parameter x estimated using Grid star or Quasar observations
- Astrophysics for an object is done using $\underline{\mathbf{b}}_{reg}$. $\underline{\Delta s}$ values

National Aeronautics and Space
 Administration
 Jet Propulsion Laboratory
 California Institute of Technology

• Fundamental astronomical quantity of interest is $\underline{\mathbf{B}}$. $\underline{\Delta \mathbf{S}}$:

$$\underline{\boldsymbol{b}}_{reg}.\ \underline{\boldsymbol{\Delta}}\underline{\boldsymbol{s}} = \boldsymbol{d}_{reg} - \underline{\boldsymbol{b}}_{reg}.\underline{\boldsymbol{s}} \ \ \text{-} <\!\!\underline{\boldsymbol{\Delta}}\underline{\boldsymbol{b}}\!\!> .\underline{\boldsymbol{s}} \ \ \text{-} <\!\!C\!\!> \ \text{-} <\!\!FDE\!\!> \ \text{-} <\!\!ZE\!\!> \text{-} \ \eta$$

• However, if project/NExScI does calibration correctly, then for all regularized delays:

$$\Delta d_{cal} = d_{cal} - \underline{\mathbf{b}}_{reg} \cdot \underline{\mathbf{s}} = \underline{\mathbf{b}}_{reg} \cdot \underline{\Delta \mathbf{s}} + \eta'$$

Where:

- $\Delta d_{cal} = d_{cal} \underline{\mathbf{b}}_{reg} \cdot \underline{\mathbf{s}} =$ delay residual or residual delay [or 'regularized' delay by some!]
- d_{cal} = calibrated regularized delay = d_{reg} $\langle \Delta b \rangle$. s $\langle C \rangle$ $\langle FDE \rangle$ $\langle ZE \rangle$ • η' = effective random noise after calibration has taken place

• η' = effective random noise after calibration has taken place RMS(η')/RMS(η) = noise multiplier due to calibration

- Products delivered to astronomer: $d_{cal}(t)$, $\underline{\mathbf{b}}_{reg}(t)$, [$\underline{\mathbf{s}}(t)$ (or equivalent)]
- What $\underline{\mathbf{b}}_{reg}(t)$ do you need for your project?
 - How often do you need to observe your objects?
 - What baseline orientations would you like?
 - How does this need/request fit into schedule?
 - Does this need/request meet SIM-Lite spacecraft constraints
- What SNR (= $\underline{\mathbf{b}}_{reg}$. $\underline{\Delta s}/\eta$ ') do you need for your project?

National Aeronautics and Space

Administration Jet Propulsion Laboratory California Institute of Technology

Delay equation fundamentals: example histograms

National Aeronautics and Space

Administration Jet Propulsion Laboratory California Institute of Technology

• FDEs can be represented as linear sum of Zernike polynomials

 \geq

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Methods of Calibrating Out Errors On Different Time Scales:1

- Internal and external metrology gauge errors produce delay errors that are functions of
 - Time (time-dependent errors)
 - Position of the star in the field of regard (FDEs)
- Almost all **SIM** errors are time <u>*de*</u>pendent on some time scale
- Delay drift on a few minute timescale (of interest only for N targets)
 - Co-observe 4-5 Reference stars
 - Observe: N-R₁-N-R₂-N-R₃-N-R₄-N-R₅-N
 - Repeat in reverse R-order: -R₅-N-R₄-N-R₃-N-R₂-N-R₁-N
 - Solve and remove short-term drift by chopping adjacent N & R delays
- Delay drift between *observations within a single tile*
 - Main source of error is temporal drift in constant term C
 - Remove linear component of this C temporal drift by
 - Observing a single bright star at the beginning and end of the tile
 - This star can be at the center of the tile on the sky
 - NOTE: if ΔB_v and/or ΔB_z also drift significantly:
 - One or two more stars also could be re-observed and these drift in these components determined as well
 - These stars *cannot be at the center* of the tile (sample x,y dependence)

NIAGA	National Aeronautics and Space Methods of Calibrating Out Errors
	Jet Propulsion Laboratory California Institute of TechnologyOn Different Time Scales: 2
	• Drifts in baseline parameters <i>between tiles</i>
	- ΔB_v , ΔB_z , and C are determined for each ~1hour tile
	- These instrumental parameters are solved for and removed <u>during grid-processing</u> (using a large matrix inversion)
	- This is equivalent to solving for Z_2 , Z_5 , and Z_1 in each tile
	 Instrumental parameters that vary <u>only on time scales longer than a</u> <u>"solution interval"</u> (~100 or fewer tiles)
	- There are many other instrumental parameters that need to be calibrated out:
	• Baseline length $(=\Delta B_x = Z_3)$
	• Higher-order FDEs (Z_4 , Z_6 - Z_{15} and maybe higher)
	- PROBLEM : These all cannot be solved in every tile (too many parameters for the number of grid observations)
ite	- SOLUTION: Solve for those that are known to vary slowly only occasionally (i.e., ~500-1000 times) over the mission
	Global <i>zonal errors (ZEs) over the entire mission</i>
	 Incomplete sampling of the sky by the grid can produce systematic, correlated error patches on the sky
5	 Proper motion (PM) & parallax (but not position) errors can be removed by
	- Observing 50-100 radio-quiet QSOs as part of the grid for ~1 minute each time, whenever they appear in a tile
	- QSOs should have ~0 PM and 0 parallax, allowing zonal errors to easily be fit to low-order vector and scalar spherical harmonics
	Space Technology JPL CALTECH D. Murphy/D. Meier 09/24/08 - 12

National Aeronautics and Space Administration Jet Propulsion Laboratory

Example of Zonal Errors (ZEs)

Σ

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Summary and Questions

- Project/NExScI creates d_{cal} from d_{reg}
- Large variety of errors are removed in this data processing
- $\Delta d_{cal} = d_{cal} \underline{\mathbf{b}}_{reg} \cdot \underline{\mathbf{s}} = \underline{\mathbf{b}}_{reg} \cdot \underline{\Delta \mathbf{s}} + \eta'$
- Use of d_{cal} , \underline{b}_{reg} , $\underline{\underline{s}} \setminus \Delta d_{cal}$ (astrophysics
 - What set of $\underline{\mathbf{b}}_{reg}$ do you need?
 - What SNR (= $\underline{\mathbf{b}}_{reg}$. $\underline{\Delta s}/\eta$ ') do you need?

