The Dynamical Legacy of Star Formation

Adam Kraus, Lynne Hillenbrand Caltech

Signatures of Star Formation

Present-day structure in star-forming associations (Kraus & Hillenbrand 2008)

(Chabrier 2005)

SIM and Star Formation

To fully reconstruct the history and primordial state of a star-forming region, we need to analyze the kinematics.

The expected velocity dispersions (<1 km/s) are hard to measure with RVs and almost impossible to measure with ground-based astrometry. However, SIM's accuracy will allow for measurements as precise as 10 m/s!

Study Plan: Three questions

- 1) What are we really trying to measure?
- 2) What are the main sources of systematic error, and how can we avoid them?
- 3) What is SIM's unique contribution to this field?

Radial Velocities

Furesz et al. 2008: RVs for ONC stars (filled circles) plotted over corresponding values for gas. Structure can be seen on scales of ~3 km/s, but any potential small-scale structure is limited by the instrument precision (~1 km/s).

Log D (distance)

Log D (distance)

After an interval T_3 ... Structure on progressively larger scales is averaged out by random stellar motions.

Log D (distance)

-og Σ (density of neighbors)

Preliminary Results

We've already applied this technique for two young associations with wellstudied populations, Taurus (1-2 Myr) and Upper Scorpius (5 Myr).

Inferred velocities are ~1.2 km/s in Upper Sco and a mere 200 m/s in Taurus!

(Kraus & Hillenbrand 2008, arXiv:0809.0893)

Potential Sources of Systematic Error

Astrometric jitter could be introduced by several astrophysical sources: variability of luminous binary companions, orbital motion due to unseen low-mass companions, and star spots. (See Tanner et al. 2007)

Other Systematic Effects

- Environment: Our study should span a range of environments: sparse aggregates (Taurus), OB associations (Sco-Cen), and clusters (ONC, IC348)
- Evolutionary stage As a proxy for age, our study should include WTTSs, CTTS, and hopefully earlier-stage protostars
- Mass Is early mass segregation primordial or dynamical? Is there direct evidence of brown dwarfs being ejected?

What is the role of SIM?

SIM's niche includes objects which are optically faint (brown dwarfs and embedded protostars) or too distant for GAIA's more modest precision (high-mass clusters).

For bright, nearby stars, GAIA should deliver the necessary precision in the course of its survey.

Summary

- Goal #1: Define the problem by inferring the velocity dispersions that we need to measure (in progress; see Kraus & Hillenbrand 2008)
- Goal #2: Identify a sample of young stars that spans a range of mass, environment, and evolutionary stage, then use existing data to screen unsuitable targets
- Goal #3: Determine the complementary roles of SIM and GAIA