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55 Cnc 
Lyot Project Coronagraph  first light



• planet is a faint point-like source over a noisy background

• Several sources of noise: speckle photon detector etc.

• The stability and statistical properties of these noise source will 
define the actual dynamic range
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A few questions...

• What is the statistics of the speckle noise in direct high Strehl images?

• What is the effect of a coronagraph on the statistics of the noise?

• What is the interaction between coronagraph, static, quasi-static 
and residual atmospheric speckles?

• Need for a statistical model

• Start with direct images

• Study the effect of a coronagraph

• Study the effect of static or quasi-static aberrations



Speckle and photon noise 
in direct images



• Speckle pinning (Bloemof  etal 2001, Sivaramakrishnan etal 2002)

• origin: wavefront errors 
• atmospheric residuals and/or quasi static aberrations (space & ground)

imaging in the presence
of wavefront errors

  5. CORRECTOR PROOF-OF-CONCEPT DEMONSTRATION 

 

The technical feasibility of correcting the mid-spatial-frequency surface errors in large optical components (primary & 

secondary mirrors) using a small, microfigured mirror was recently demonstrated by ASML Inc. (previously the 
precision lithographic optics division of Tinsley SVG).  They were contracted to produce a small (127 mm) mirror that 

would correct a provided wavefront error map to a specified level.  They were given a map (Figure 6) based on the 

surface errors of the Hubble Space Telescope (HST) that was derived from phase retrieval measurements from on-orbit 

data.  This map was chosen because it was readily available and represents a worst-case scenario for a future optical 

system like JPF; the mirrors in a new optical system would be much smoother (Figure 4) and would lack the “record 

grove” polishing errors seen in the HST maps. 

 

ASML was able to create a corrector within spec and within the allotted amount of time.  In the critical 4-50 

cycles/aperture range, the best-achieved corrected wavefront error (2x effective surface error) was 0.52 nm RMS (Figure 

7).   The corrector would reduce scattered light by a factor of 5x to 2000x, depending on the radius from the star.  With 

additional time or a smoother wavefront map, they would be able to produce even better results. 
 

 

 

 

Target -Corrector Residual

127 mm  
 
Figure 6.  (Left) Modified surface amplitude map derived from HST phase retrieval measurements that was provided to ASML as the 
“target” map; (Middle) Inverse surface amplitude map of the corrector mirror fabricated by ASML intended to negate the target map 
(measured using a proprietary differential phase interferometer); (Right) Sum of the target and corrector maps.  All maps are 
displayed between ±45 nm of surface amplitude. 
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Accurate and stable pointing is critical to maintaining the alignment of the beam on the corrector mirror and keeping the 

star centered on the occulting spot.  Thermally induced variations in the telescope structure can also alter the optical 

alignment.  The ISS alt-az mounting from Lockheed used by JPF has a pointing and tracking accuracy of 0.1”, and finer 

control is maintained using the FSM.  The optical bench is kept at a constant temperature using heating elements and 

thermal isolators.  Pointings are avoided that could introduce significant thermal variations (for example, the telescope 

never points at the Earth, the major source of thermal instability in the Hubble Space Telescope). 
 

To suppress the diffraction pattern below the expected level of scatter light, we investigated the performance of not only 

conventional Lyot coronagraphs but also shaped and apodized apertures, such as the Gaussian-like shaped or apodized- 

square apertures favored by other teams.  In the end, the apodized-spot Lyot coronagraph was selected because it 

provided the best combination of field-of-view, resolution, and throughput.  Apodized spots permit more efficient 

suppression of the diffracted light while making the system slightly less sensitive to jitter.  Such spots, however, are 

difficult to make accurately.  For JPF, we have Gaussian-apodized spots with half-widths-at-half-maximum of 0.4” and 

0.8”.  Because they are tapered in transmission, imaging is possible within the spot. 

 

 

 

 

 
 

 

 

 

 
Figure 4.  This is the surface error map of a 0.212 meter diameter 
mirror produced by ASML (formerly Tinsley) for UV 
photolithography.  It has an RMS midfrequency surface (1/2 
wavefront) error of 0.25 nm.  It demonstrates the current state-of-
the-art in optical surface figuring.  A version of this map was used 

as the assumed residual wavefront error pattern in JPF optical 
simulations.  Compare the smoother surface of this mirror with 
that of the HST primary (of which a modified form is shown in 
Figure 4).

 

 

 

3. MICROFIGURED WAVEFRONT CORRECTOR 

 

Wavefront ripple needs to be <1 nm RMS for an exoplanet-imaging survey.   For comparison, the ripple in HST is 18 

nm RMS.  Most proposed imaging systems have relied on densely actuated deformable mirrors or supersmooth mirrors 

to provide such a flat wavefront.    A deformable mirror (DM) with thousands of precise, short-stroke actuators would be 

necessary to correct ripple in the critical spatial frequency range of 5-50 cycles/aperture.  Such DMs are still 

experimental, and they are likely to remain an expensive and perhaps risky solution for the next several years.  Super-

smooth (<0.25 nm RMS surface error; see Figure 4) mirrors avoid the introduction of wavefront errors from the 

beginning, but they may be impractical or too expensive to fabricate at sizes of ~1.5 m or more.   

 

An alternative is to create reasonably smooth large mirrors (1 to 4 nm RMS wavefront ripple) and correct the residuals 
with a small (~100 mm) corrector mirror that has the inverse error pattern polished into its surface.  After the large 

mirrors are figured to an acceptable smoothness, the three mirrors can be tested together in the flight optical bench and 
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Speckles 

• Two complementary approaches:

• Wavefront propagation using Tayor 
expansion (Sivaramakrishnan etal. 
2002, Perrin etal. 2003). 

• Statistical optics approach (Aime & 
Soummer 2004, Soummer & Aime 
2004)



• Wave amplitude at the pupil plane:

Ψ1(x, y) = [A + a(x, y)] P (x, y)

uncorrected part of the wavefrontPlane wave

Statistical model: pupil plane

Phase 
simulation

Amplitude 
(scintillation)



• Wave amplitude at the pupil plane:

Ψ1(x, y) = [A + a(x, y)] P (x, y)

Re

Im uncorrected part of the wavefrontPlane wave

Statistical model: pupil plane
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Statistical model: focal plane 

Ψ2(x, y) = A ×F [P (x, y)] + F [a(x, y) × P (x, y)]

decentered gaussian statistics
(complex amplitude in the focal plane)

same solution as for holographic speckle (Goodman 1975)

P(ξ, η) =
1

π < |S(r)|2 >
exp

(
−(ξ − Re[C̃(r)])2 + (η − Im[C̃(r)])2

< |S(r)|2 >

)

Ψ1(x, y) = [A + a(x, y)] P (x, y)

C̃(r)
Constant 

deterministic term

S(r)
Speckle 

random term



decentered gaussian statistics
(complex amplitude in the focal plane)

same solution as for holographic speckle (Goodman 1975)

P(ξ, η) =
1

π < |S(r)|2 >
exp

(
−(ξ − Re[C̃(r)])2 + (η − Im[C̃(r)])2

< |S(r)|2 >

)
Statistical model: focal plane 



• Statistics of the intensity in the focal plane: 
modified Rice distribution 
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• Modified Rice distribution 

PI(I) =
1
Is

exp
(
−I + Ic

Is

)
I0

(
2
√

I
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Statistical model: focal plane 



• Poisson Mandel Transformation

• Photon counting statistics:

Photon counting statistics

P(n) =
1
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)−n exp
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• Mean intensity: diffraction pattern + halo

• Variance speckle:

< |Ψ2(x, y)|2 >= |C(x, y)|2+ < |S(x, y)|2 >= Ic + Is

Mean and Variance

σ2
I = I2

s + 2IsIc



• Mean intensity: diffraction pattern + halo

• Variance speckle:

• Variance speckle + photon noise:

< |Ψ2(x, y)|2 >= |C(x, y)|2+ < |S(x, y)|2 >= Ic + Is

Mean and Variance

σ2
I = I2

s + 2IsIc

σ2 = I2
s + 2IsIc + Ic + Is

Same variance expression used in the TPF error budget by Shaklan 2004
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Lick ao data

First verification on sky of 
speckles rician statistics:

Fitzgerald & Graham (2005) 

Lick AO



Palomar ao data
Palomar AO single point statistics 

through the data cube

Exposure time 120ms in K band, need for a model of integrated speckles 

Non central chi square distribution of order M
Soummer etal in prep
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Palomar ao data
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Effect of a coronagraph on the 
speckle and photon noise
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Figure 81 Left: Gemini pupil without spiders.  Right: An optimized shaped pupil that allows for simple spider

geometry, and provides a 10
-7

 contrast floor in a wedge with 5 !/D `waist’

Figure 82 Left: perfect PSF of the pupil in Figure 81, with no residual WFE.  The green line corresponds to a

contour of 10
-6

 relative to the bright central peak.  The “waist” of suppression corresponding to 10
-7

 of the

peak’s PSF is approximately 5 !/D  across horizontally. Right: The same pupil, with a 96% Strehl ratio

SFWFS AO-corrected wave front, produces a PSF which is brighter than 10
-6

 everywhere within the control

area of the AO system and deformable mirror.  The 10
-6

 contour lies completely outside the panel, which is 64

!/D on a side.

3.5.5.4 Phase Masks (PM)

Simple Phase Mask (PM) coronagraphs modify the wave front at the image plane by creating

regions of " radians of phase difference between different parts of the image to create destructive

interference of on-axis light.  Recent advances in PM coronagraphy (Soummer et al. 2003) use

more sophisticated phase masks to create achromatic (i.e. exact at two wavelengths) or

apochromatic cancellation over wide bandpasses.  While recent work on the PM coronagraphy

has indeed shown progress, we have rejected this design, citing three major concerns:

manufacturability, chromatic effects with wide bandwidths, and residual image motion

requirements.
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• The direct focal plane amplitude is:

Effect of a coronagraph

Ψ2(r) = Cd(r) + S(r)
Static 
direct 
response

Speckle 
term



• The direct focal plane amplitude is:

• The coronagraphic focal plane amplitude is:

Effect of a coronagraph

Static 
coronagraph 
response

Speckle 
term

Ψ4(r) = Cc(r) + S(r)

Ψ2(r) = Cd(r) + S(r)
Static 
direct 
response

Speckle 
term

 A coronagraph has a no effect on the speckle term 
outside the mask area



Suppression of speckle amplification
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• A coronagraph can suppress the speckle noise 
coherent amplification (speckle pinning)

• Direct coronagraphic gain where Ic>Is

σ2 = (2IsIc + Ic) + (I2
s + Is) = σ2

c + σ2
s

Suppression of speckle amplification

Can be removed by a 
coronagraph

Unaffected by a 
coronagraph



• Ic and Is from simulations

• Variance from analytical expressions

Semi-analytical method
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• The static coronagraph response includes the 
static aberrations

• Residual pinning amplification by static 
aberrations through the coronagraph!

• space observations like TPF

Static aberrations

Ψ4(r) = Cc(r) + S(r)



• Quasi-static speckles can also be included

• Decomposition into: perfect, static, quasi 
static and atmospheric terms:

Static + Quasi-static

Ψ4 = C̃ + S1(x) + S2(x)

σ2 = N1τ
2
1

(
I2
s1 + kI2

s2 + 2Ĩc (Is1 + kIs2) + 2Is1Is2

)
Ψ1 = A + As(x) + a1(x) + a2(x)



Conclusions (I)

• The speckle statistics of direct and 
coronagraphic images is given by a modified 
Rice distribution

• Ground based: (static + ao) 

• Space: (static + quasi static)

• Generalization possible for the ground 
(static + ao + quasi static)

• Model consistent with real data



Conclusions (II)

• Semi-analytical method to study/predict 
dynamic range

• Speckle calibration/cancellation (slow) 
necessary to reach the atmospheric variance 
level

• Performance of the speckle reduction can be 
derived from the analysis of the limiting noise 
contribution




