

TOWARD EXPLORATION OF OTHER WORLDS

High Contrast AO Coronagraphy Today: Lyot Project Status & Preliminary Results

THE LYOT PROJECT

TOWARD EXPLORATION OF OTHER WORLDS

Outline

What is the Lyot Project?

Instrument Design

Performance: Achieved Contrast Semi-Static Speckles

Speckle Suppression: Polarimetry

Science Results

THE LYOT PROJECT

American Museum 🖱 Natural History 🌮

TOWARD EXPLORATION OF OTHER WORLDS

Ben R. Oppenheimer, Anand Sivaramakrishnan, Remi Soummer, Andrew P. Digby, Sasha Hinkley, Douglas Brenner, Michael Shara AMNH

Russell B. Makidon

Space Telescope Science Institute

UC Berkeley

Cornell

James P. Lloyd

Jeffrey R. Kuhn, Kathryn Whitman

Lewis C. Roberts, Jr.

IfA, University of Hawaii

The Boeing Company

And thanks to: NSF, AFOSR, CfAO, AMNH, & Michelson Science Center!

What is the Lyot Project?

"The world's first optimized diffraction-limited coronagraph"

High contrast imaging using the highest-order astronomical AO system available today.

Technology Development

Companion Survey to Nearby Stars

Circumstellar Disk Imaging

The Lyot Project Coronagraph

Active control system

Internal Strehl 0.98 (32 nm RMS WFE)

IR Science Camera: Kermit 2048² pix Hawaii-2 J, H, Ks imaging

The Lyot Project Coronagraph

Active control system

Internal Strehl 0.98 (32 nm RMS WFE)

IR Science Camera: Kermit 2048² pix Hawaii-2 J, H, Ks imaging

The Lyot Project Coronagraph

Data!

Vega, 2005 May 14

Mask diameter $5 \lambda/D \text{ at H}$ $450 \mu \text{m}$

> 100 x 8s exposures

4.8 arcsec

H band

Hinkley et al., in prep

Semi-Static Speckles

80x real time

~1500 s

Semi-Static Speckles

Ideal Real Pupil Scintillation

Actual AEOS Pupil Illumination

Sivaramakrishnan et al. 2005 Proc. AMOS Conference

Differential Polarimetry

Speckles are unpolarized, so they will vanish in the difference of two perpendicular polarizations (a Stokes parameter image)

Differential AO Polarimetry Results

Potter et al. 2000

Perrin et al. 2004

Lyot Project Polarimetry

Modulator: Liquid Crystal Variable Retarders (LCVRs)

> located before image stop Pro: no moving parts Con: somewhat chromatic & temp. sensitive

Analyzer: Wollaston Prism

> located immediately after Lyot Stop Calcite

Polarimetry Performance

Perpendicular Polarizations

Double Difference

HIP 67927

Polarimetry Performance

Hinkley et al., in prep

Science Results

54 stars surveyed,30 with polarimetry

Several potential companions

AB Aur disk

2006: More observing runs Data reduction Publish!

2006: IFU final design 2007: IFU assembly 2008: IFU science

