Probing Sub-AU Radii of Protoplanetary Disks: Observations with PTI and KI

Josh Eisner*

Collaborators: Rachel Akeson, Lynne Hillenbrand, Ben Lane, Anneila Sargent, Russel White

October 21, 2005

Miller Research Fellow, UC Berkeley

Circumstellar Disks

- Disk evolution constrains planet and star formation mechanisms
- Proto-solar nebula
- Extra-solar planets

Planet, Asteroid, and Comet Positions from http://ssd.jpl.nasa.gov/orbits_outer.html

Focus: Inner Disk

- Earth-like planet formation: dust/gas distributions & temperatures
- Giant planet migration:origin of "hot Jupiters"
- Inner disk accretion: magnetospheric accretion, outflows, stellar ang. mom.

Palomar Testbed Interferometer (PTI)

- 3 telescopes each 0.4 m
 - 110 m NS oriented 20° E of N (4 mas)
 - 85 m NW oriented 81° E of N (5 mas)
 - 87 m SW baseline recently operational

• One 85m baseline on MK

Keck-I (KI)

Results I: Disk Geometry

(Eisner et al. 2004)

- Sample:
 - 14 HAEBEs (2-10 M $_{\odot}$)
 - 4 T Tauris (1-2 $M_{\odot})$
- Fit geometric models to PTI, KI visibilities: uniform disk, Gaussian, ring (+ star)
- All but 2 sources (HD141569, HD158352) resolved
 - $-\theta$ ~1-6 mas

Most sources inclined
 i~10-85°

PTI+IOTA Data

- Some objects also observed by IOTA (Millan-Gabet, Schloerb, & Traub 2001)
 - K-band: AB Aur, MWC 1080
 - H-band: AB Aur, T Ori, MWC 297,
 V1295 Aql, V1686 Cyg, MWC 1080
- Shorter baselines than PTI (20-40m vs.
 85-110m)⇒additional constraints on geometry
- Larger FOV than PTI (3" vs 1") \Rightarrow constrains incoherent emission from extended dust
 - Scattered light around AB Aur?

Inner vs. Outer Disks: Warping?

PTI+IOTA near-IR: $i \approx 10-20^{\circ}$

(Lack of) Disk Warping

Source	Inner disk inclination	Outer disk inclination	mm ref.
AB Aur	10-15°	~76°; ~20°; 17°, 40°	Mannings & Sargent 1997; Corder, Eisner, & Sargent, 2005; Semenov et al. 2005, Piétu et al. 2005
MWC 480	24-32°	~30*	Mannings et al. 1997
MWC 758	33-37°	~46°	Mannings & Sargent 1997
CQ Tau	48°	~70°; ~45 •	Testi et al. 2003; Corder et al. in prep.

Physical Properties of YSO Disks

- Inner disk structure constrains disk accretion, planet formation
- R_{in}, *i* from interferometry R_{in} ~ 0.1-1 AU, *i* ~ 10-85°
- Combined with SEDs: T_{in}, vertical structure T_{in} ~ 1000-2500 K (stellar params from echelle spectroscopy & literature)

Flared 2-layer disk with puffed-up inner wall

HAEBE Disk Structure

• R_{in} ~ 0.1-0.8 AU T_{in} ~ 1300-2100 K

Earliest spectral types
 inconsistent with puffed-up; fit
 well by flat disk

• Dependence of inner disk structure on stellar luminosity? Accretion rate?

T Tauri Disk Structure

Flat Accretion DisksFlared Disks with Puffed-Up Inner Walls

- KI observations: 4 solar-type
 T Tauri stars
 - AS 205A, AS 207A, V2508 Oph (1 M_{\odot})
 - PX Vul (2 M_{\odot})
- R_{in} ~ 0.1-0.3 AU T_{in}~1000-2000 K
- As HAEBEs, puffed-up inner disk models generally better

Inner Disk Vertical Structure

- For T Tauri stars and later-type HAEBEs, puffed-up inner disk models better
- Early-types are fit well by flat disk models; not at all by puffed-up inner walls
- Dependence on accretion rate, stellar properties? Different accretion mechanisms?

Disk Truncation Radii

- R_{mag} ≈ R_{corot}
 R_{meas} > R_{mag}
- Higher M_{dot}: larger R_{sub}, smaller R_{mag}
- Dust sublimation: 0.1-0.3 AU; gaseous truncation at R_{mag} ~ 0.03-0.1 AU
- Planet formation exterior to dust sublimation radius at ~0.1 AU

Planetary Migration

Source	0.63 R _{in} (dust) (AU)	0.63 R _{mag} (gas) (AU)
AS 205A	0.09	0.02
AS 207A	0.15	0.08
V2508 Oph	0.08	0.07
PX Vul	0.20	0.03

- Migration halts in 2:1 resonance with inner disk edge (0.63 $\rm R_{in}$; Lin, Bodenheimer, and Richardson 1996)
- 0.63 R_{in} larger than observed pile-up location of extra-solar planets (e.g., Udry, Mayor, & Santos 2003; www.exoplanets.org)
- 0.63 R_{mag} more compatible

Halted by gaseous disk edge at R_{mag} (?)

Summary

- PTI observations of 14 HAEBEs:
 - 12 resolved (1-6 mas),
 - ≥7 significantly inclined
- KI observations of T Tauri stars (1-2 M_{\odot}):
 - all resolved (1-2 mas)
- Disk Warping: no significant mis-alignment of inner and outer disks
- Vertical disk structure:
 - Low-mass stars (< 5 M_{\odot}) have puffed-up, flared disks
 - High-mass/ accretion-dominated stars consistent with flat disks
- Measured sizes > magnetospheric, co-rotation radii
 - Gaseous material at smaller radii than dust truncation (?)
 - Implications for terrestrial planet formation, giant planet migration

The VLT Array on the Paranal Mountain

Enhanced Sensitivity:

 Larger samples
 range of masses, ages, accretion rates,...

 Spectroscopy:

 R_{gas}
 dist. of various molecules
 Variability:

•variable accretion rates, Bfields? protoplanets?

The End.

Inner Disk Vertical Structure

