Crystalline Silicate Emission in the Protostellar Binary Serpens-SVS20

D. R. Ciardi¹, C. M. Telesco², C. Packham², C. Goméz Martin², J. T. Radomski²,

J. M. De Buizer³, C. J. Phillips⁴, D. E. Harker⁵

¹Michelson Science Center - Caltech, ²University of Florida, ³Gemini Obsevatory & NOAO, ⁴Australia Telescope National Facility, CSIRO, ⁵UC, San Diego

Introduction

- SVS20 Flat/Class I Binary Protostellar System
- Located in Serpens (d~250 pc)
- Binary Separation: 1.5" (375 AU)
- Part of a young cluster (10⁵ years)
- Polarization indicates an evacuated cavity surrounding the binary
- Previous mid-infrared spectroscopy with ISO
- Spatially unresolved
- Showed both silicate emission and absorption

Observations

- Obtained ground-based mid-infrared (8 - 13 $\mu m)$ spatially resolved photometry and spectroscopy

- Spectroscopy (8 13 μm)
 - T-ReCS on Gemini-South
 - 2003 October 05
 - R~111 at $\lambda o{=}10.5~\mu m~(\Delta \lambda = 0.022045~\mu m/pix)$

```
• S/N ~ 50 - 70
```

• Narrow-Band Photometry

- T-ReCS on Gemini-South
 - 11.7 μ m ($\Delta\lambda = 1.1 \mu$ m)
- Pixel Scale = 0.089" pixel⁻¹
- •TIMMI-2 on La Silla 3.6m
 - 10.4 μ m ($\Delta\lambda = 1.0 \mu$ m)
 - 11.9 μ m ($\Delta\lambda = 1.2 \mu$ m)
 - 12.9 μ m ($\Delta\lambda = 1.2 \mu$ m)
 - Pixel Scale = 0.2" pixel⁻¹

REFERENCES. — 1. This work, 2. Alexander et al. (2003), 3. Haisch et al. (2002), 4. Hurt & Barsony (1996)

infrared spectra for SVS20-S and SVS20-N. The individual data points represent photometry presented in this work (T-ReCS & TIMMI2 photometry) and from the literature (IRAS). The summed spectrum is presented for ease of comparison to the unresolved IRAS photometry. The data near telluric ozone ($9.3 < \lambda <$ 9.7μ m) have been removed because of uncertain ozone subtraction. The continua estimates are shown as the dashed lines. The photometry is summarized in Table 1

Estimate of Envelope Extinction • Envelope extinction estimated from 3.1 ice feature • A_v~ 14 mag (Eiroa 1987) • Created model of amorphous olivine extinction • 0.15 µm grains • Peak Optical depth at 9.7 µm • $\tau(9.7 \,\mu\text{m}) \sim 0.82$ • Multiplied observed spectra by model $exp(\tau_1)$ · Produces "protostar-only" mid-infrared spectra Amorphous Olivine Ŋ 2 2-0C2U 10 11 λ [μm] 9 12 10 11 λ [μm] 12 13 SVS20 0.20 0.15 0.6 8. [Jy] [Jy] Ens 0.10 0 10.5 11.0 11.5 12.0 10.5 11.0 11.5 12.0 [µm]

T-ReCS spectra after removal of envelope extinction. Main features identified. Gaussian (2 pixel) smoothed.

Results

- Protostellar spectrum dominated by amorphous silicate emission
 - Peak at $\lambda \sim 10 \ \mu m \ (not \ 9.7 \ \mu m)$
 - Indicative of amorphous olivine grain growth
- Local emission feature near 11.3 μm
- Continuum subtraction reveals crystalline grain growth
- Broad forsterite peak at 11.3 µm
- Narrow enstatite peaks at 11.0 and 11.4 μ m

•Crystalline grain growth begins at very early evolutionary stages!!