

Need for High Angular Resolution

- Challenging Angular Resolution:
 1 AU @ 100 pc: 10 mas
- Only long-baseline optical interferometers can resolve the inner disk for most sources
- Scientific Interest
 - Initial conditions of planet formation
 - Disk inhomogenieties (motion)
 - Region of disk where terrestrial planets form
 - Direct detection of extrasolar planets

HST/WFPC2 Credit: C. Burrows (STScI)

Young Stellar Objects (Near-IR)

In the early 1990s, our story begins with the progenitors of intermediate-mass stars:

the Herbig Ae/Be stars

- Just the higher-mass counterparts to T Tauri stars (solartype progenitors)
- T Tauri disks were relatively "well understood"
 - Geometrically thin
 - Optically thick
 - Possible Accretion Luminosity
- Physical Process: thermal emission from hot dust accreting onto young stars

In the beginning... astronomers created SEDs...

- Hillenbrand et al. 1992
 - Re-processed radiation + accretion luminosity
 - Temp: $T \propto r^{-\frac{3}{4}}$
 - Central hole!
- SED fits were ok
 - Required (too) high accretion rates (Hartmann)

Pre-Interferometry (NIR): Summary of Herbig Models

- Hillenbrand et al 1992 successfully fit SEDs with <u>optically</u> thick, geometrically thin accretion disk models (with central holes)
- Miroshnichenko et al 1997 successfully fit SEDs with spherically symmetric envelopes of dust (Halos – not disks?)
- Mannings & Sargent 1997 detect (outer) disks using millimeter interferometry
- Inner disks or (spherical) halos? Or both?
 - New data needed to break the theoretical logjam..

Interferometry

- Fringe <u>Visibility</u> (or contrast) depends on source size
- Angular resolution depends on telescope separation and PA

Example ($\lambda/2D$)

100 m baseline @ 1 μm:

1.0 mas (0.1 AU @ 100pc)

Visibility: Star + Dust Shell

Surprise: AB Aurigae TOO BIG!

 Accretion disk model, used for SED fitting, is <u>RULED OUT</u> by IOTA!

Rafael @ IOTA

IOTA Survey Results

- Millan-Gabet, Traub & Schloerb 2001 reported characteristic sizes of sample of Herbig Ae/Be stars
 - Much larger than expected based on "standard" accretion disk models (optically-thick disks)
 - Although <u>no obvious disk asymmetries</u> were found, most sources were probed at limited position angles

<u>Disks</u> Around Herbig Ae/Be Stars (with Keck aperture masking)

(e.g., Hillenbrand et al. 1992 + flaring)

"Classical" Disk Model

"Optically-thin Cavity" Disk Model

(e.g., Tuthill et al 2001; Natta et al. 2001)

Infrared Luminosity Problem? Solved.

- Natta et al. 2001
 - Flaring increases mid-IR (e.g., Chiang & Goldreich 1997;
 - HOT INNER WALL increases near-IR
- Expanded upon by Dullemond, Dominik, et al.

T Tauri Disks are too big too!

- PTI resolves T Tauri N
- TTS are just the low-mass counterparts to the Herbigs (!)

0.8 0.6 1.61 mas Gaussian 2.62 mas uniform disk Accretion disk (Ghez) 0.2 Accretion disk (Akeson) Binary companion 0 Ô 20 40 60 80 100 120 Projected baseline (m)

Akeson et al 2000

Test of Optically-thin Cavity Model: The Size-Luminosity Diagram

The next big questions

- Why so much scatter in size-luminosity relation?
- What happens at lower and higher luminosities?

The next big questions

- Why so much scatter in size-luminosity relation?
- What happens at lower and higher luminosities?
- What is the actual geometry of the near-infrared emission?
 - Disk, halo, other?

Near-IR emission is often ELONGATED

- Elongations now well-established for MANY sources (PTI; Akeson et al. 2002; Eisner et al. 2003, 2004)
 - Explains residual x2 scatter in size-luminosity diagram

Imaging Disks with IOTA3

Traub
Berger
Monnier
Millan-Gabet
Pedretti
Schloerb
Carleton
And more

First closure phases for YSOs: AB Aur (!)

1 milliarcsecond resolution at K band

MWC 275 with IOTA3, Keck-I, CHARA

Potential of IR Imaging at CHARA: YSO Disk Dynamics

Hot Jupiters at CHARA

-- and KI/VLTI

- Herbig Ae/Be
 - Well-defined near-IR size-luminosity relation
 - Some disks are elongated (and skewed!)
 - Imaging is next logical step with CHARA & VLTI
- T Tauris
 - New development of "hot inner rim"
 - Observed sizes are <u>still</u> too big
 - More sizes to come from KI & VLTI
- With 45 YSO sizes, it's now time for tailored models!
- FU Orionis Objects
 - Ask me...

Art Credit: Luis Beleriau