Observing inner discs where planets form From discs to planets: New observations, models, and theories Pasadena, California, USA

Régis Lachaume¹, Fabien Malbet², & Jean-Louis Monin²

¹Max-Planck-Institut für Radioastronomie ²Laboratoire d'Astrophysique de Grenoble

March 8th 2005

Introduction

Scales in protoplanetary discs

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ● のへで

Scales in protoplanetary discs

→ Optical interferometry & radiative transfer

But visibilities are are not enough! (1)

Irradiated & visous disc model for T Tauri: visibility fit. Lachaume, Malbet, & Monin 2003, A&A 379, 515

But visibilities are are not enough! (1)

Irradiated & visous disc model for T Tauri: visibility fit. Lachaume, Malbet, & Monin 2003, A&A 379, 515

 \rightarrow Combine observables, e.g. SED + visibilities

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ● ● の Q ()

But visibilities are are not enough! (2)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○へ⊙

But visibilities are are not enough! (2)

→ Adaptive optics & speckle interferometry

Ad hoc modelling

AMBER observation of MWC 297

Herbig Be star

Resolved in K, Tatulli 2005, Ph.D. thesis

・ロト ・ 同ト ・ ヨト ・ ヨ

AMBER observation of MWC 297

Herbig Be star Resolved in K, Tatulli 2005, Ph.D. thesis

▲□▶ ▲圖▶ ▲匡▶ ★匡▶ = 臣 = のへで

PTI, IOTA, & VLTI observation of FU Ori (1)

FU Ori: YSO with accretion outburst

Marginally resolved in H & K, Malbet et al. 2005, submitted

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

PTI, IOTA, & VLTI observation of FU Ori (1)

FU Ori: YSO with accretion outburst

Marginally resolved in H & K, Malbet et al. 2005, submitted

PTI, IOTA, & VLTI observation of FU Ori (2)

FU Ori: hot spot in the disc?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○のへ⊙

PTI, IOTA, & VLTI observation of FU Ori (2)

FU Ori: hot spot in the disc?

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

MIDI observation of Hen 3 1191 (1)

B[e] star: either YSO or proto-PN. Resolved in N, Lachaume et al. 2005, in prep

・ロト ・ 同ト ・ ヨト ・ ヨ

MIDI observation of Hen 3 1191 (1)

B[e] star: either YSO or proto-PN. Resolved in N, Lachaume et al. 2005, in prep

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○

MIDI observation of Hen 3 1191 (2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三三 のへで

Radiative transfer modelling

(ロト (個) (E) (E) (E) (の)

Using two-layer disc models

Generalised Chiang & Goldreich (1997) two-layer models.

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ● ● の Q ()

- Simple implementation
- Analytical dependencies

Using two-layer disc models

Generalised Chiang & Goldreich (1997) two-layer models.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○

- Simple implementation
- Analytical dependencies

PTI observation of SU Aur

Irradiation by the star and accretion Lachaume et al. 2003, A&A 400, 795

star = G2 star

 $\dot{M} = 2 - 10 \times 10^{-8} M_{\odot} / \text{yr}$

(日) (字) (日) (日) (日)

The mid-IR SED of FU Ori stars

Backwarming of the disc and accretion Lachaume 2004, A&A, 422, 171

→ N-band interferometry

(日) (字) (日) (日) (日)

Conclusion

Main points

- In absence of image reconstruction, be careful:
 - count with extended contribution;
 - combine with other observables.

Still new constraints on the physics of the first AUs

Main points

- In absence of image reconstruction, be careful:
 - count with extended contribution;
 - combine with other observables.

Still new constraints on the physics of the first AUs

- Forthcoming large data sets with the VLTI need
 - "toy models" for a first interpretation;
 - new, detailed simulations
 - Accretion and irradiation often occur together, which no current model self-consistently describes.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○

 Optically thick inner parts are not directly seen, though their physics condition planet formation.