Quantifying False Positive Probabilities for Transiting Planet Candidates

Timothy Morton (Princeton)

Sagan Workshop
July 20, 2016
<table>
<thead>
<tr>
<th>Name</th>
<th>Msin(i)</th>
<th>Semi-Major Axis</th>
<th>Orbital Period</th>
<th>Orbital Eccentricity</th>
<th>Velocity Semi-Amplitude</th>
<th>First Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OGLE-TR-10 b</td>
<td>0.63</td>
<td>0.0435</td>
<td>3.101290</td>
<td>0</td>
<td>80</td>
<td>Konacki 2005</td>
</tr>
<tr>
<td>HD 80606 b</td>
<td>3.89</td>
<td>0.4473</td>
<td>111.43670</td>
<td>0.9340</td>
<td>472.0</td>
<td>Naef 2001</td>
</tr>
<tr>
<td>GJ 436 b</td>
<td>0.0726</td>
<td>0.02872</td>
<td>2.643850</td>
<td>0.160</td>
<td>18.34</td>
<td>Butler 2004</td>
</tr>
<tr>
<td>HD 149026 b</td>
<td>0.360</td>
<td>0.04313</td>
<td>2.8758911</td>
<td>0</td>
<td>43.3</td>
<td>Sato 2004</td>
</tr>
<tr>
<td>TrES-1 b</td>
<td>0.752</td>
<td>0.03925</td>
<td>3.0300650</td>
<td>0</td>
<td>115.2</td>
<td>Alonso 2005</td>
</tr>
<tr>
<td>OGLE-TR-113 b</td>
<td>1.26</td>
<td>0.02289</td>
<td>1.4324757</td>
<td>0</td>
<td>267</td>
<td>Konacki 2004, Bouchy 2004</td>
</tr>
<tr>
<td>55 Cnc e</td>
<td>0.0262</td>
<td>0.01544</td>
<td>0.7365460</td>
<td>0</td>
<td>6.30</td>
<td>McArthur 2004</td>
</tr>
<tr>
<td>OGLE-TR-56 b</td>
<td>1.35</td>
<td>0.02383</td>
<td>1.2119090</td>
<td>0</td>
<td>225</td>
<td>Konacki 2003</td>
</tr>
<tr>
<td>HD 209458 b</td>
<td>0.689</td>
<td>0.04723</td>
<td>3.52474859</td>
<td>0</td>
<td>84.67</td>
<td>Henry 2000, Charbonneau 2000</td>
</tr>
<tr>
<td>OGLE-TR-111 b</td>
<td>0.55</td>
<td>0.0469</td>
<td>4.0144479</td>
<td>0</td>
<td>78</td>
<td>Pont 2004</td>
</tr>
<tr>
<td>OGLE-TR-132 b</td>
<td>1.17</td>
<td>0.03035</td>
<td>1.6896860</td>
<td>0</td>
<td>167</td>
<td>Bouchy 2004</td>
</tr>
<tr>
<td>HD 189733 b</td>
<td>1.140</td>
<td>0.03100</td>
<td>2.21857567</td>
<td>0</td>
<td>205.0</td>
<td>Bouchy 2005</td>
</tr>
<tr>
<td>Name</td>
<td>Msin(i)</td>
<td>Semi-Major Axis</td>
<td>Orbital Period</td>
<td>Orbital Eccentricity</td>
<td>Velocity SemiAmplitude</td>
<td>First Reference</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-----------------------</td>
<td>------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>OGLE-TR-10 b</td>
<td>0.63</td>
<td>0.0435</td>
<td>3.101290</td>
<td>0</td>
<td>80</td>
<td>Konacki 2005</td>
</tr>
<tr>
<td>HD 80606 b</td>
<td>3.89</td>
<td>0.4473</td>
<td>111.43670</td>
<td>0.9340</td>
<td>472.0</td>
<td>Naef 2001</td>
</tr>
<tr>
<td>GJ 436 b</td>
<td>0.0726</td>
<td>0.02872</td>
<td>2.643850</td>
<td>0.160</td>
<td>18.34</td>
<td>Butler 2004</td>
</tr>
<tr>
<td>HD 149026 b</td>
<td>0.360</td>
<td>0.04313</td>
<td>2.8758911</td>
<td>0</td>
<td>43.3</td>
<td>Sato 2005</td>
</tr>
<tr>
<td>TrES-1 b</td>
<td>0.752</td>
<td>0.03925</td>
<td>3.0300650</td>
<td>0.160</td>
<td>115.2</td>
<td>Alonso 2004</td>
</tr>
<tr>
<td>OGLE-TR-113 b</td>
<td>1.26</td>
<td>0.02289</td>
<td>1.4324757</td>
<td>0</td>
<td>267</td>
<td>Konacki 2004, Bouchy 2004</td>
</tr>
<tr>
<td>55 Cnc e</td>
<td>0.0262</td>
<td>0.01544</td>
<td>0.7365460</td>
<td>0</td>
<td>6.30</td>
<td>McArthur 2004</td>
</tr>
<tr>
<td>OGLE-TR-56 b</td>
<td>1.35</td>
<td>0.02383</td>
<td>1.2119090</td>
<td>0</td>
<td>225</td>
<td>Konacki 2003</td>
</tr>
<tr>
<td>HD 209458 b</td>
<td>0.689</td>
<td>0.04723</td>
<td>3.52474859</td>
<td>0</td>
<td>84.67</td>
<td>Henry 2000, Charbonneau 2000</td>
</tr>
<tr>
<td>OGLE-TR-111 b</td>
<td>0.55</td>
<td>0.0469</td>
<td>4.0144479</td>
<td>0</td>
<td>78</td>
<td>Pont 2004</td>
</tr>
<tr>
<td>OGLE-TR-132 b</td>
<td>1.17</td>
<td>0.03035</td>
<td>1.6898680</td>
<td>0</td>
<td>167</td>
<td>Bouchy 2004</td>
</tr>
<tr>
<td>HD 189733 b</td>
<td>1.140</td>
<td>0.03100</td>
<td>2.21857567</td>
<td>0</td>
<td>205.0</td>
<td>Bouchy 2005</td>
</tr>
<tr>
<td>Name</td>
<td>Msin(i)</td>
<td>Semi-Major Axis</td>
<td>Orbital Period</td>
<td>Orbital Eccentricity</td>
<td>Velocity Semi-Amplitude</td>
<td>First Reference</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>OGLE-TR-10 b</td>
<td>0.63</td>
<td>0.0435</td>
<td>3.101290</td>
<td>0</td>
<td>80</td>
<td>Konacki 2005</td>
</tr>
<tr>
<td>HD 80606 b</td>
<td>3.89</td>
<td>0.4473</td>
<td>111.43670</td>
<td>0.9340</td>
<td>472.0</td>
<td>Naef 2001</td>
</tr>
<tr>
<td>GJ 436 b</td>
<td>0.0726</td>
<td>0.02872</td>
<td>11.64350</td>
<td>0.160</td>
<td>18.34</td>
<td>Butler 2004</td>
</tr>
<tr>
<td>HD 149026 b</td>
<td>0.360</td>
<td>0.04313</td>
<td>2.8758911</td>
<td>0.160</td>
<td>43.3</td>
<td>Sato 2005</td>
</tr>
<tr>
<td>TrES-1 b</td>
<td>0.752</td>
<td>0.03925</td>
<td>3.0300650</td>
<td>0</td>
<td>115.2</td>
<td>Alonso 2004</td>
</tr>
<tr>
<td>OGLE-TR-113 b</td>
<td>1.26</td>
<td>0.02289</td>
<td>1.4324757</td>
<td>0</td>
<td>267.0</td>
<td>Konacki 2004, Bouchy 2004</td>
</tr>
<tr>
<td>55 Cnc e</td>
<td>0.0262</td>
<td>0.01544</td>
<td>0.7365460</td>
<td>0</td>
<td>6.30</td>
<td>McArthur 2004</td>
</tr>
<tr>
<td>OGLE-TR-56 b</td>
<td>1.35</td>
<td>0.02383</td>
<td>1.2119090</td>
<td>0</td>
<td>225.0</td>
<td>Konacki 2003</td>
</tr>
<tr>
<td>HD 209458 b</td>
<td>0.689</td>
<td>0.04723</td>
<td>3.52474859</td>
<td>0</td>
<td>84.67</td>
<td>Henry 2000, Charbonneau 2000</td>
</tr>
<tr>
<td>OGLE-TR-111 b</td>
<td>0.55</td>
<td>0.0469</td>
<td>4.0144479</td>
<td>0</td>
<td>78.0</td>
<td>Pont 2004</td>
</tr>
<tr>
<td>OGLE-TR-132 b</td>
<td>1.17</td>
<td>0.03035</td>
<td>1.6898680</td>
<td>0</td>
<td>167.0</td>
<td>Bouchy 2004</td>
</tr>
<tr>
<td>HD 189733 b</td>
<td>1.140</td>
<td>0.03100</td>
<td>2.21857567</td>
<td>0</td>
<td>205.0</td>
<td>Bouchy 2005</td>
</tr>
</tbody>
</table>
Unsuitable for follow-up

Early spectral type

No RVs at km/s level

Stellar Binaries

OGLE planet candidates, c.2004
<table>
<thead>
<tr>
<th>Name</th>
<th>Msin(i)</th>
<th>Semi-Major Axis</th>
<th>Orbital Period</th>
<th>Orbital Eccentricity</th>
<th>Velocity Semi-amplitude</th>
<th>First Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OGLE-TR-10 b</td>
<td>0.63</td>
<td>± 0.0435</td>
<td>± 3.101290</td>
<td>0</td>
<td>80</td>
<td>Konacki 2005</td>
</tr>
<tr>
<td>HD 80606 b</td>
<td>3.89</td>
<td>± 0.4473</td>
<td>111.43670</td>
<td>0.9340</td>
<td>472.0</td>
<td>Naef 2001</td>
</tr>
<tr>
<td>GJ 436 b</td>
<td>0.0726</td>
<td>± 0.02872</td>
<td>± 2.643850</td>
<td>0.160</td>
<td>18.34</td>
<td>Butler 2004</td>
</tr>
<tr>
<td>HD 149026 b</td>
<td>0.360</td>
<td>± 0.04313</td>
<td>± 2.8758911</td>
<td>0.160</td>
<td>43.3</td>
<td>Sato 2005</td>
</tr>
<tr>
<td>TrES-1 b</td>
<td>0.752</td>
<td>± 0.03925</td>
<td>± 3.0300650</td>
<td>0</td>
<td>115.2</td>
<td>Alonso 2004</td>
</tr>
<tr>
<td>OGLE-TR-113 b</td>
<td>1.26</td>
<td>± 0.02289</td>
<td>± 1.4324757</td>
<td>0</td>
<td>267</td>
<td>Konacki 2004, Bouchy 2004</td>
</tr>
<tr>
<td>55 Cnc e</td>
<td>0.0262</td>
<td>± 0.01544</td>
<td>± 0.7365460</td>
<td>0</td>
<td>6.30</td>
<td>McArthur 2004</td>
</tr>
<tr>
<td>OGLE-TR-56 b</td>
<td>1.35</td>
<td>± 0.02383</td>
<td>± 1.2119090</td>
<td>0</td>
<td>225</td>
<td>Konacki 2003</td>
</tr>
<tr>
<td>HD 209458 b</td>
<td>0.689</td>
<td>± 0.04723</td>
<td>± 3.52474859</td>
<td>0</td>
<td>84.67</td>
<td>Henry 2000, Charbonneau 2000</td>
</tr>
<tr>
<td>OGLE-TR-111 b</td>
<td>0.55</td>
<td>± 0.0469</td>
<td>± 4.0144479</td>
<td>0</td>
<td>78</td>
<td>Pont 2004</td>
</tr>
<tr>
<td>OGLE-TR-132 b</td>
<td>1.17</td>
<td>± 0.03035</td>
<td>± 1.6898680</td>
<td>0</td>
<td>167</td>
<td>Bouchy 2004</td>
</tr>
<tr>
<td>HD 189733 b</td>
<td>1.140</td>
<td>± 0.03100</td>
<td>± 2.21857567</td>
<td>0</td>
<td>205.0</td>
<td>Bouchy 2005</td>
</tr>
<tr>
<td>Name</td>
<td>Mass (M sin(i))</td>
<td>Semi-Major Axis</td>
<td>Orbital Period</td>
<td>Eccentricity</td>
<td>Semi-Amplitude</td>
<td>First Reference</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>OGLE-TR-10 b</td>
<td>0.63</td>
<td>0.0435</td>
<td>3.101290</td>
<td>0</td>
<td>80</td>
<td>Konacki 2005</td>
</tr>
<tr>
<td>HD 80606 b</td>
<td>3.89</td>
<td>0.4473</td>
<td>111.43670</td>
<td>0.9340</td>
<td>472.0</td>
<td>Naef 2001</td>
</tr>
<tr>
<td>GJ 436 b</td>
<td>0.0726</td>
<td>0.02872</td>
<td>2.643850</td>
<td>0.160</td>
<td>18.34</td>
<td>Butler 2004</td>
</tr>
<tr>
<td>HD 149026 b</td>
<td>0.360</td>
<td>0.04313</td>
<td>2.8758911</td>
<td>0</td>
<td>43.3</td>
<td>Sato 2005</td>
</tr>
<tr>
<td>TrES-1 b</td>
<td>0.752</td>
<td>0.03925</td>
<td>3.0300650</td>
<td>0</td>
<td>115.2</td>
<td>Alonso 2004</td>
</tr>
<tr>
<td>OGLE-TR-113 b</td>
<td>1.26</td>
<td>0.02289</td>
<td>1.4324757</td>
<td>0</td>
<td>267</td>
<td>Konacki 2004, Bouchy 2004</td>
</tr>
<tr>
<td>55 Cnc e</td>
<td>0.0262</td>
<td>0.01544</td>
<td>0.7365460</td>
<td>0</td>
<td>6.30</td>
<td>McArthur 2004</td>
</tr>
<tr>
<td>OGLE-TR-56 b</td>
<td>1.35</td>
<td>0.02383</td>
<td>1.2119090</td>
<td>0</td>
<td>225</td>
<td>Konacki 2003</td>
</tr>
<tr>
<td>HD 209458 b</td>
<td>0.689</td>
<td>0.04723</td>
<td>3.52474859</td>
<td>0</td>
<td>84.67</td>
<td>Henry 2000, Charbonneau 2000</td>
</tr>
<tr>
<td>OGLE-TR-111 b</td>
<td>0.55</td>
<td>0.0469</td>
<td>4.0144479</td>
<td>0</td>
<td>78</td>
<td>Pont 2004</td>
</tr>
<tr>
<td>OGLE-TR-132 b</td>
<td>1.17</td>
<td>0.03035</td>
<td>1.6898680</td>
<td>0</td>
<td>167</td>
<td>Bouchy 2004</td>
</tr>
<tr>
<td>HD 189733 b</td>
<td>1.140</td>
<td>0.03100</td>
<td>2.21857567</td>
<td>0</td>
<td>205.0</td>
<td>Bouchy 2005</td>
</tr>
<tr>
<td>OGLE-TR-33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Torres 2004</td>
</tr>
<tr>
<td>Name</td>
<td>Msin(i)</td>
<td>Semi-Major Axis</td>
<td>Orbital Period</td>
<td>Orbital Eccentricity</td>
<td>Velocity Semiamplitude</td>
<td>First Reference</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>OGLE-TR-10 b</td>
<td>0.63</td>
<td>0.0435</td>
<td>3.101290</td>
<td>0</td>
<td>80</td>
<td>Konacki 2005</td>
</tr>
<tr>
<td>HD 80606 b</td>
<td>3.89</td>
<td>0.4473</td>
<td>111.43670</td>
<td>0.9340</td>
<td>472.0</td>
<td>Naef 2001</td>
</tr>
<tr>
<td>GJ 436 b</td>
<td>0.0726</td>
<td>0.02872</td>
<td>2.643850</td>
<td>0.160</td>
<td>18.34</td>
<td>Butler 2004</td>
</tr>
<tr>
<td>HD 149026 b</td>
<td>0.360</td>
<td>0.04313</td>
<td>2.8758911</td>
<td>0.160</td>
<td>43.3</td>
<td>Sato 2005</td>
</tr>
<tr>
<td>TrES-1 b</td>
<td>0.752</td>
<td>0.03925</td>
<td>3.0300650</td>
<td>0</td>
<td>115.2</td>
<td>Alonso 2004</td>
</tr>
<tr>
<td>OGLE-TR-113 b</td>
<td>1.26</td>
<td>0.02289</td>
<td>1.4324757</td>
<td>0</td>
<td>267</td>
<td>Konacki 2004, Bouchy 2004</td>
</tr>
<tr>
<td>55 Cnc e</td>
<td>0.0262</td>
<td>0.01544</td>
<td>0.7365460</td>
<td>0</td>
<td>6.30</td>
<td>McArthur 2004</td>
</tr>
<tr>
<td>OGLE-TR-56 b</td>
<td>1.35</td>
<td>0.02383</td>
<td>1.2119090</td>
<td>0</td>
<td>225</td>
<td>Konacki 2003</td>
</tr>
<tr>
<td>HD 209458 b</td>
<td>0.689</td>
<td>0.04723</td>
<td>3.52474859</td>
<td>0</td>
<td>84.67</td>
<td>Henry 2000 , Charbonneau 2000</td>
</tr>
<tr>
<td>OGLE-TR-111 b</td>
<td>0.55</td>
<td>0.0469</td>
<td>4.0144479</td>
<td>0</td>
<td>78</td>
<td>Pont 2004</td>
</tr>
<tr>
<td>OGLE-TR-132 b</td>
<td>1.17</td>
<td>0.03035</td>
<td>1.6898680</td>
<td>0</td>
<td>167</td>
<td>Bouchy 2004</td>
</tr>
<tr>
<td>HD 189733 b</td>
<td>1.140</td>
<td>0.03100</td>
<td>2.21857567</td>
<td>0</td>
<td>205.0</td>
<td>Bouchy 2005</td>
</tr>
<tr>
<td>OGLE-TR-33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Torres 2004</td>
</tr>
<tr>
<td>Name</td>
<td>Msin(i)</td>
<td>Semi-Major Axis</td>
<td>Orbital Period</td>
<td>Orbital Eccentricity</td>
<td>Velocity Semi-amplitude</td>
<td>First Reference</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>OGLE-TR-10 b</td>
<td>0.63</td>
<td>0.0435</td>
<td>3.101290</td>
<td>0</td>
<td>80</td>
<td>Konacki 2005</td>
</tr>
<tr>
<td>HD 80606 b</td>
<td>3.89</td>
<td>0.4473</td>
<td>111.43670</td>
<td>0.9340</td>
<td>472.0</td>
<td>Naef 2001</td>
</tr>
<tr>
<td>GJ 436 b</td>
<td>0.0726</td>
<td>0.02872</td>
<td>11.643850</td>
<td>0.160</td>
<td>18.34</td>
<td>Butler 2001</td>
</tr>
<tr>
<td>HD 149026 b</td>
<td>0.360</td>
<td>0.04313</td>
<td>2.8758911</td>
<td>0.160</td>
<td>43.3</td>
<td>Sato 2005</td>
</tr>
<tr>
<td>TrES-1 b</td>
<td>0.752</td>
<td>0.03925</td>
<td>3.0300650</td>
<td>0</td>
<td>115.2</td>
<td>Alonso 2004</td>
</tr>
<tr>
<td>OGLE-TR-113 b</td>
<td>1.26</td>
<td>0.02289</td>
<td>1.4324757</td>
<td>0</td>
<td>267</td>
<td>Konacki 2004, Bouchy 2004</td>
</tr>
<tr>
<td>55 Cnc e</td>
<td>0.0262</td>
<td>0.01544</td>
<td>0.7365460</td>
<td>0</td>
<td>6.30</td>
<td>McArthur 2004</td>
</tr>
<tr>
<td>OGLE-TR-56 b</td>
<td>1.35</td>
<td>0.02383</td>
<td>1.2119090</td>
<td>0</td>
<td>225</td>
<td>Konacki 2003</td>
</tr>
<tr>
<td>HD 209458 b</td>
<td>0.689</td>
<td>0.04723</td>
<td>3.52474859</td>
<td>0</td>
<td>84.67</td>
<td>Henry 2000, Charbonneau 2000</td>
</tr>
<tr>
<td>OGLE-TR-111 b</td>
<td>0.55</td>
<td>0.0469</td>
<td>4.0144479</td>
<td>0</td>
<td>78</td>
<td>Pont 2004</td>
</tr>
<tr>
<td>OGLE-TR-132 b</td>
<td>1.17</td>
<td>0.03035</td>
<td>1.6898680</td>
<td>0</td>
<td>167</td>
<td>Bouchy 2004</td>
</tr>
<tr>
<td>HD 189733 b</td>
<td>1.140</td>
<td>0.03100</td>
<td>2.21857567</td>
<td>0</td>
<td>205.0</td>
<td>Bouchy 2005</td>
</tr>
<tr>
<td>OGLE-TR-33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Torres 2004</td>
</tr>
</tbody>
</table>
TRES-1 b

• $V = 11.4$
• Follow-up observations:
 • H- and K- band AO imaging
 • Medium-resolution spectroscopy (7 epochs)
 • Multi-color transit photometry (3 facilities, 7 filters)
 • Keck/HIRES RV spectroscopy (8 epochs)
• 80% false positive rate for this survey
Kepler-10 system
- b confirmed by RVs
- c validated with BLENDER

First K2 validations
- 17 planets
- isochrones and vespa introduced/released

Kepler-9 system
- b,c confirmed by TTVs
- d validated with BLENDER

Kepler-22b
- First Kepler habitable-zone planet
- validated with BLENDER

Fressin+ corroborate low FP rate

TDM & Johnson predict >90% reliability

Kepler-4b-7b announced

TDM: automated validation procedure

First public Kepler candidate catalog

700+ multi-KOIs validated

1200+ Kepler validations

100+ K2 validations
Kepler 4b-7b announced

Kepler 9 system
- b,c confirmed by TTVs
- d validated with BLENDER

Kepler-10 system
- b confirmed by RVs
- c validated with BLENDER

Kepler launch

Kepler-22b
- First Kepler habitable-zone planet
- validated with BLENDER

First public Kepler candidate catalog
TDM & Johnson predict >90% reliability

Fressin+ corroborate low FP rate

700+ multi-KOIs validated

1200+ Kepler validations

First K2 validations
- 17 planets
- isochrones and vespa introduced/released

100+ K2 validations

TDM: automated validation procedure

700+ multi-KOIs validated
Kepler-22b

Borucki et al. (2011):

- Imaging from 3 different facilities (seeing-limited, speckle, AO)
- Keck/HIRES spectroscopy at 17 epochs
- 17 hours of *Warm Spitzer* observation to measure transit color dependence
- BLENDER analysis
2009

Kepler launch

Kepler-9 system
- b, c confirmed by TTVs
- d validated with BLENDER

Kepler-4b-7b announced

2010

TDM & Johnson predict >90% reliability

Kepler-10 system
- b confirmed by RVs
- c validated with BLENDER

First public Kepler candidate catalog

2011

Kepler-22b
- First Kepler habitable-zone planet
- validated with BLENDER

Kepler-9 system
- b, c confirmed by TTVs
- d validated with BLENDER

2012

Fressin+ corroborate low FP rate

2013

700+ multi-KOIs validated

2014

TDM: automated validation procedure

2015

1200+ Kepler validations

2016

First K2 validations
- 17 planets
- isochrones and vespa introduced/released

100+ K2 validations

1700+ Kepler validations

100+ K2 validations
Kepler 4b-7b announced

Kepler-9 system
- b,c confirmed by TTVs
- d validated with BLENDEX

Kepler-10 system
- b confirmed by RVs
- c validated with BLENDEX

TDM & Johnson predict >90% reliability

First public Kepler candidate catalog

TDM: automated validation procedure

First Kepler habitable-zone planet
- validated with BLENDEX

Fressin+ corroborate low FP rate

700+ multi-KOIs validated

First K2 validations
- 17 planets
- isochrones and vespa introduced/released

1200+ Kepler validations

100+ K2 validations
light curve shape

Simulate representative populations
Hierarchical EB Scenario
Transiting Planet Scenario
BEBs

K00007.01: Probability of scenario: 0.000
Constraints:
secondary depth < 1.24e-05
odd-even < 1.11e-05

\[f_{pl,V} = 0.000 \]
FPP: < 1 in 1e6
Planets

K00969.01: Probability of scenario: 0.126
K00969.01: Probability of scenario: 0.248
Constraints:
secondary depth < 5.44e-05
odd-even < 0.000127

\[f_{pl,V} = 48.681 \]
FPP: 1 in 1
Kepler-10 system
- b confirmed by RVs
- c validated with BLENDER

Kepler-4b-7b announced

TDM & Johnson predict >90% reliability

Fressin+ corroborate low FP rate

First public Kepler candidate catalog

Kepler-9 system
- b,c confirmed by TTVs
- d validated with BLENDER

Kepler-22b
- First Kepler habitable-zone planet
- validated with BLENDER

First K2 validations
- 17 planets
- isochrones and vespa introduced/released

1200+ Kepler validations

700+ multi-KOIs validated

100+ K2 validations

TDM: automated validation procedure
Kepler-10 system
- b confirmed by RVs
- c validated with BLENDER

Kepler-9 system
- b,c confirmed by TTVs
- d validated with BLENDER

Kepler 4b-7b announced

Kepler launch

2009
2010
2011
2012
2013
2014
2015
2016

First public Kepler candidate catalog

TDM & Johnson predict >90% reliability

Fressin+ corroborate low FP rate

Kepler-22b
- First Kepler habitable-zone planet
- validated with BLENDER

First K2 validations
- 17 planets
- isochrones and vespa introduced/released

700+ multi-KOIs validated

1200+ Kepler validations

100+ K2 validations

TDM: automated validation procedure

1200+ Kepler validations

First K2 validations
• 17 planets
• isochrones and vespa introduced/released

700+ multi-KOIs validated

1200+ Kepler validations

100+ K2 validations

TDM: automated validation procedure

2009
2010
2011
2012
2013
2014
2015
2016
VESPA

DOI: 10.5281/zenodo.16670

Validation of Exoplanet Signals using a Probabilistic Algorithm—calculation of false positive probabilities for transit signals.

For usage and more info, check out the documentation. [Note: be aware that the documentation is out of date (though not totally useless).]

ISOCHRONES

DOI: 10.5281/zenodo.37647

Provides simple interface for interacting with stellar model grids.

Installation

Install with `pip install isochrones` or by cloning the repository and running `python setup.py install`.
Kepler-10 system
- b confirmed by RVs
- c validated with BLENNDER

Kepler 4b-7b announced

Kepler-9 system
- b,c confirmed by TTVs
- d validated with BLENNDER

First public Kepler candidate catalog

TDM & Johnson predict >90% reliability

Fressin+ corroborate low FP rate

Kepler-22b
- First Kepler habitable-zone planet
- Validated with BLENNDER

First K2 validations
- 17 planets
- isochrones and vespa introduced/released

700+ multi-KOIs validated

100+ K2 validations

1200+ Kepler validations
Kepler 4b-7b announced
- b confirmed by RVs
- c validated with BLENDER

2009
Kepler launch

2010
Kepler-9 system
- b,c confirmed by TTVs
- d validated with BLENDER

2011
Kepler-10 system
- b confirmed by RVs
- c validated with BLENDER

TDM & Johnson predict >90% reliability

Fressin+ corroborate low FP rate

First public Kepler candidate catalog
TDM: automated validation procedure
700+ multi-KOIs validated

2012
First K2 validations
- 17 planets
- *isochrones* and *vespa* introduced/released

2013
Kepler-22b
- First Kepler habitable-zone planet
- validated with BLENDER

2014
1200+ Kepler validations

2015
100+ K2 validations

2016
Kepler Candidates
From the DR24 Catalog (2015)

Previously confirmed/validated
(984)

More likely imposter
(707)

Newly validated
(1,284)

More likely planet
(1,327)
Exoplanet Discoveries Through the Years

As of May 10, 2016

- 1,284 Newly Validated Planets
- Previous Kepler/K2 Discoveries
- Non-Kepler Discoveries

Number of New Planets

Discovery Year

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Planets</td>
<td></td>
</tr>
</tbody>
</table>
Kepler-9 system
- b,c confirmed by TTVs
- d validated with BLENNDER

Kepler-10 system
- b confirmed by RVs
- c validated with BLENNDER

Kepler 4b-7b announced

First public Kepler candidate catalog

TDM & Johnson predict >90% reliability

Fressin+ corroborate low FP rate

Kepler-22b
- First Kepler habitable-zone planet
- validated with BLENNDER

Kepler-22b
- 700+ multi-KOIs validated
- TDM: automated validation procedure

1200+ Kepler validations

First K2 validations
- 17 planets
- isochrones and vespa introduced/released

100+ K2 validations
Kepler-4b-7b announced

Kepler launch

Kepler-9 system
 • b,c confirmed by TTVs
 • d validated with BLENDER

Kepler-10 system
 • b confirmed by RVs
 • c validated with BLENDER

TDM & Johnson predict >90% reliability

Fressin+ corroborate low FP rate

First public Kepler candidate catalog

TDM: automated validation procedure

700+ multi-KOIs validated

First K2 validations
 • 17 planets
 • isochrones and vespa introduced/released

Kepler-22b
 • First Kepler habitable-zone planet
 • validated with BLENDER

100+ K2 validations

700+ multi-KOIs validated

First K2 validations
 • 17 planets
 • isochrones and vespa introduced/released

1200+ Kepler validations

100+ K2 validations
isochrones and vespa