Detecting False Positives with Oxygen: A Feasibility Study

We are exploring how to use ground-based high-resolution spectroscopy to distinguish between abiotic O_2 formed from H₂O photolysis in the upper atmosphere, and well-mixed biological O_2 .

O₂ as a Biosignature

- Oxygen is a strong biosignature
- However, there are several abiotic mechanisms which can produce O₂
- The abiotic production of O₂ via H₂O photolysis may be particularly difficult to distinguish from biological O₂
- We present the prospects for using ground-based high-resolution spectroscopy to reconcile this false positive (below) mechanism

Many false positives for biological O₂ are known, but most reveal their presence via additional molecules that are present (circled) or missing (crossed out).

Abiotic O₂ Production

- Lowering the non-condensible gas (e.g. N₂) inventory allows more H₂O into the upper atmosphere (Wordsworth and Pierrehumbert 2014)
- H₂O is photolyzed and H escapes to space
- O₂ builds up in the upper atmosphere
- Possible for planets around all stellar types

() Prof. N

and m R \bigcirc 2

Ratio

Uran O C a D C

Miles Currie, Victoria Meadows **University of Washington, Virtual Planetary Laboratory**

Because the Q branch of this spectroscopic band is more sensitive to changes in the oxygen profile than the P and R branches, we hypothesize that the Q branch flux will saturate before the others. Thus, the ratio of the fluxes in the Q branch to the P and R branches may be sufficient for probing the distribution of oxygen in the atmosphere. Below we show the calculated ratios for each of the above scenarios. Qflux

Test Cases:

Abiotic O₂ (Photochemistry)

Biological O₂

e column abundance as abiotic case (Photosynthetic Life)

Earth

Ground-Based High-Res Spectroscopy

- Potential solution for solving one of the trickiest false positives
- Current space-based instruments are not capable of the resolution needed to distinguish this false positive (R≥100,000)
- The upcoming extremely large (30-40m) ground-based observatories will carry the high-resolution instruments needed for using this method for distinguishing this false positive

Conclusions

- We may be able to distinguish evenly mixed biological O₂ from the abiotic production and buildup of oxygen in the upper atmosphere by analyzing the P, Q, and R branches of the 1.27 µm O₂ band
- This false positive remains very challenging to discriminate, but this method is a promising start

Future Work

- Use a coupled climate-photochem model to better understand the atmospheric distribution of photochemically produced O_2
- Investigate the detectability and retrieval of these types of atmospheres
- Investigate the use of atmospheric pressure indicators as another method to distinguish this false positive

This work by members of the Virtual Planetary Laboratory, a member of the NASA Nexus for Exoplanet Systems Science, was supported by NASA Astrobiology Program Grant Number 80NSSC18K0829