The Radius Valley as a By-Product of Planet Formation:
The Core-Powered Mass-Loss Mechanism
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Recent Observations Planet size vs. Stellar mass
Model: CKS-II stellar distribution Observations e Great agreement with

* Most common planets known are 1-4 Earth radii in size
* Lack of small, close-in exoplanets around 1.5-2.0 Earth radii,
i.e., a radius valley' separating a population of super-Earths
(smaller planets) and sub-Neptunes (larger planets)
* Compositions?
 Super-Earths have higher densities — consistent with
planets having rocky ‘Earth-like’ composition
 Sub-Neptunes have lower densities — consistent with
planets engulfed in H/He envelopes
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observations.

* The core-powered
mass-loss mechanism
depends on stellar
bolometric luminosity
which, in turn, is
strongly correlated
with stellar mass such

Observations
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Background: The Core-Powered Mass-Loss Mechanism + Valley’s slope: t8, = teoor = thes X exp(R3Tso") o« exp(RIM; /*%) - dlog(R,) /d log(M,) = (3a —

S

2)/36. For CKS-II dataset, @ ~ 5 — d log(R,) /d log(M,) = 0.36 — consistent with observations [3,7].
o * For observations, as shown in the figure, d log(R.) /d log(M_) ~ 0.35
Internal luminosity drives : : : : p S Tor o«
atmospheric mass.loss. * Physical understanding: more massive/luminous stars — higher planetary equilibrium temperature
Source: planet's primordial — more massive cores can get stripped of their atmospheres — valley moves up in planet size
energy from formation « Photoevaporation predicts a roughly flat radius valley as a function of stellar mass (provided that the
orbital period distribution is independent of stellar mass |3])
* Therefore, a linear correlation between planet and stellar mass has been invoked to understand
these observations under photoevaporation |8]
* In contrast to photoevaporation models: Core-powered mass-loss predicts no significant correlation

o0 Escape of gas molecules from between planet and stellar mass
the planet

Atmosphere contracts as the

Core-cooling and planet cools and loses mass
atmospheric mass-loss

Parker-type hydrodynamic
outflow of gas molecules

Planet size vs. Insolation flux, as a function of Stellar mass
Super-Earths Sub-Neptunes

~ stripped cores ~ engulfed in atmosphere ‘Model’: CKS-II stellar distribution

y /ﬁ\\ = 1077 M, < 0.97M; 0.97TM- < M, < 1.11M M, = 1.11M;
: : Radius Vall - - . . . . . . . .
Final bimodal state . ST (\ . ) ‘
* Final states of a planet: Lo

* Sub-Neptune: if a planet does not has enough internal energy to overcome the gravitational 3000 1000 300 100 30 10 3‘3’*3;“ ‘lﬂﬂﬂ ;"3"3 1“3"3' 3‘3’L h“f' 3000 1000 300 100 30 10
_ _ _ _ , _ _ _ _ nsolation fHux relative to lhart
binding energy of its atmosphere OR if a planet’s cooling timescale (t.,,;) is shorter than its
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mass-loss timescale (t;,.,), i.€., if £ < t1pgs- Observations

* Super-Earths: : if a planet has enough internal energy to overcome the gravitational binding — M, <0.97Mo 0.97Mo <My <1.11Mo M, }_1- 11 *":4@
. . O 35 : ' — Q
energy of its atmosphere AND ift,.,,; > t;,c¢ E - 0.020 €
» Slope of the Valley = t,,,; =t} s = o B
- _ : .+B _ Matm 2 3m—1 4/3 el : Q
Mass-loss timescale: tj, . = TTRZCops X exp(GM,, /(csRycp)) X exp(RyTeq Pex ) g 0010 E
* Exponential dependence — valley’s slope strongly depends on the terms in the exponent D15 "l Do ) 00 %
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Results from Gupta & Schlichting, 2019a, 2019b

Comparison with observations and trends in planet size distribution with stellar prop.
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Stellar light intensity relative to Earth

_ _ _ * Results show that super-Earth and sub-Neptune populations move to higher insolation flux with
Planet size vs. Orbital period increasing stellar mass, since the observed orbital period distribution is roughly independent of

Model: CKS-II Stellar distribution Observations e Good agreement with stellar mass [3]
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e | | _ - [[Fiton & Petigurar20a8/ T~ - observations in reproducing
N B E P the location, slope and shape Observational Predictions
2 o4 £ 24 of the radius valley and
S S ‘ L relative planetary occurrences * No significant, i.e., weaker than linear, correlation between planet and stellar mass
é g .| _ § L ke, : Results corroborate * Slope of the valley is a function of stellar mass, i.e., it depends on the stellar-mass luminosity relation
£ A ‘ s | :' .'.I:-;-;%f:. e & gravitational compression of * Relative abundance of super-Earths to sub-Neptunes changes with age even after the first 500 Myrs

| | | . Ly SN planetary cores  Existence of giga year old planets in the radius valley which are losing mass
Orbital period (daye) Onbitalperiod [days] + Valley’s slope: t}) e = teoor =
thss o exp(R3T;1) o« exp(R3P?) - dlog(R,) /d log(P) = —0.11 References
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* Observed planets can have water/ice content of up to ~ 20% by mass 2019, Ap], 874, 91.



