The Radius Valley as a Byroduct of Planet Formation:

The CorePowered MasslL.oss Mechanism
Y= Akash Gupta and Hilke E. Schlichting?

Recent Observations

Most commonplanets known are 1-4 Earth radii in size

Lackof small, closein exoplanetsaround 1.5-2.0 Earth radii,

|.e., aradius valley' separating a population of super-Earths

(smaller planets) and sub-Neptunes(larger planets)

A Compositions?

A SuperEarths have higher densities © consistent with
planets having rocky O % A-10 B Eofposition

A SubNeptunes have lower densities © consistent with
planets engulfedin H/He envelopes
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Background: The CordPowered MassLoss Mechanism

[Based on data from Fulton et al., 2017]

Internal luminosity drives
atmospheric mass-loss.
Source: planet's primordial

Atmosphere contracts as the energy from formation

planet cools and loses mass

Core-cooling and
atmospheric massloss

Parker-type hydrodynamic
outflow of gas molecules

Escape of gas molecules from
the planet

Sub-Neptunes
~ engulfed in atmosphere

Super-Earths
~ stripped cores
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Final bimodal state

A

A Final statesof a planet:
A SubNeptune: if a planet does not has enough internal energy to overcome the gravitational

binding energy of its atmosphere ORif aB | A 1 cAdDr @mescale (0 ) is shorter than its

masslosstimescale(o6  ,i.e,if O o .
A SuperEarths: : if a planet has enoughinternal energy to overcome the gravitational binding

energy of its atmosphere ANDIf O 0
A Slopeofthe Valleyk ¢ 0

A Masslosstimescale 0 o AGED Tw'Y o Ag®my " 7

A Exponentialdependence® O A | [slApg étrangly dependson the terms in the exponent

Resultsfrom Gupta & Schlichting, 2019a, 2019b

Comparison with observations and trends In planet size distribution with stellar prop.

Planet size vs. Orbital period

A Good agreement with
observations in reproducing
the location, slope and shape
of the radius valley and
relative planetary occurrences

A Results corroborate
gravitational compression of
planetary cores

[Fulton &Petigura 2018]
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A Excellentagreementwith the observedslopeof ™t w g [5]and 1 p & [6]
A Sinced © Ag®m? ): location of the valley dependson planet density asm ., 4

A For bestagreementwith observationsplanet core-densities,m. v gcm3
A Observedplanets canhavewater/ice content of up to ~ 20% by mass
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Planet size vs. Stellar mass

Model: CKS-II stellar distribution Observations

A Great agreement with
observations.

A The corepowered
massloss mechanism
depends on stellar
bolometric luminosity
which, In turn, Is
strongly correlated
with stellar mass such

Stellar mass (M) that i‘)i U

A6AT T AUBO @ iDPAge Agm Y )o Agmio 7 Qi) FQl iWlg) o
¢ fo @For CKgl dataset, v© QI 1%) QI 1(UG) = 0.36 © consistent with observations [3,7].
A For observations, as shown in the figuréQl 1("¢) 7QI 1(iG) ~ 0.35

A Physical understanding: more massive/luminous star® higher planetary equilibrium temperature
O more massive cores can get stripped of their atmospherés valley moves up in planet size

A Photoevaporation predicts a roughly flat radius valley as a function of stellar mass(provided that the
orbital period distribution is independent of stellar mass[3])
A Therefore, a linear correlation between planet and stellar mass has been invoked to understand

theseobservationsunder photoevaporation [ 8]

A In contrast to photoevaporation models: Core-powered massloss predicts no significant correlation
between planet and stellar mass

[Fulton &Petigura'2018] - .
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Planet size vs. Insolation flux, as a function of Stellar mass
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A Results show that supetEarth and subNeptune populations move to higher insolation flux with
Increasing stellar mass, since the observed orbital period distribution is roughly independent of
stellar mass [3]

Observational Predictions

A No significant, i.e., weaker than linear, correlation between planet and stellar mass

A Slopeof the valley is a function of stellar mass,i.e., it dependson the stellar-massluminosity relation
A Relative abundanceof super-Earthsto sub-Neptuneschangeswith ageevenafter the first 500 Myrs
A Existenceof gigayear old planetsin the radius valley which are losing mass
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