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Global results of the Spitzer Exploration Science Program red worlds

Stellar variability from photometry

IntrOdUChon One possible way to gain insight on the host star of a

planetary system is to use transits as a scan of the - b b ON

Context: With more than 1000 hours of observation, the Spitzer Exploration Program stellar photosphere. By comparing the transits depths o e TP P e
red worlds (ID: 13067) targeted exclusively TRAPPIST-1, a nearby ultracool dwarf star at different epoch we can identify unusual events that e G - =0 Mo R %@®®@®¢@@¢%®®¢-0§2§5
orbited by seven transiting Earth-sized planets. The program's main goals were (1) to are invisible outside of transit. ’
explore the system for new transiting planets, (2) to monitor intensively the planets' g o g o T
transits to bring the strongest possible constraints on their masses, sizes, compositions, 2 o o b 03 I OO 5352
and dynamics, and (3) to assess the infrared variability of the host star. 3 N ® 3 ® o ° ¢ 0ee
This poster is associated to a paper (in prep.) in which we present the global results of | e & e Y b A o o
the program. We analysed 71 new transits and combine them with 100 previously oo
analysed transits, for a total of 171 transits observed at 3.6 um or 4.5 um. results U U 19 e o et o%4
 For all planets the depths are consistent from a transit ™ o

Red Worlds exploration program to another, with no discrepancy larger than 30 (see spoch farbitrary Fpoch farbitrary} |

Figure 2) : : - :

More than 1000 hours of observations ! Notably 480 hours of continuous monitoring Figure 2. Time dependent variations of the transit depth from

individual analysis for planet b to h, black line is the median

- Measurements obtained in/out-of-transit do not reveal  f.om global andlysis, 15 and 2 & significance in shades grey

Observations were already presented in [1] and [2] any transit shape asymmetry that could be related to
the crossing of spot/faculae.
Here 71 new transits in IRAC 1 and 2 + global analyses of the entire dataset Besides, the study of flares is essential to get insights on
the planetary evolution and the potential presence of life
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* A global analysis of all transits to refine through the SPITZER observations

the planets parameters given in [2]
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* Individual analysis of each light curve to
seek for transit depth anomalies and
orphan structures
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* Global analyses of all transit associated to
a planet to get the best precision of the
depth and to report the transit timing
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Broadband transmission spectra

The TRAPPIST-1 planetary system is an exceptional opportunity for the atmospheric
characterization of temperate terrestrial exoplanets with the upcoming James Webb Space

Ol‘phdn i'I‘CI nSii'S & qunet OCCU"CIHOnS Telescope (JWST). To prepare those observations we use an extensive follow up from

ground and space to construct broadband transmission spectra of the 7 planets:
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e P 0 (JD-2450000) uration (days) mpact parameter - On Figure 7. we show the spectra of b and e for observations carried out with K2,
Orphan I'rcmsii's #1 0.57 +0.13 7658.4609 + 0.0012 0.0362 £+ 0.0047 0.956 £ 0.031 Liverpool Telescope, SPECU LOOS, AAT, UK|RT, VLT, and SPITZER
#2 0.59 + 0.16 7671.4522 + 0.0012 0.0329 £+ 0.0035 0.975 + 0.023

« Our analyses reveal chromatic variations at the order of 200 — 300 ppm

We seek for orphan structures: =

000000

« When comparing with theoretical model from [5] we observe that currently our
observations can not constraints any scenario, we must wait for JWST

* We found four orphan events that we could
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- Nevertheless, we must emphasize that stellar contamination can prevent this retrieval.

not correct with any baseline or known transit === _ . . b
Indeed, photospheric heterogeneity on the host star impact on the transmission spectra

 Two of them are particularly convincing

; L TR SUUDRY IR through the Transit Light Source effect [6] and can mimic atmospheric features in the
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* They look similar to each other, if same object : G L s R . A REEENE spectra
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the period should be ~12.9 days e S S —| Figure 7. Top Left: Broadband transmission spectra of planet b, coloured dots are observation
. . (JD -2450000) +r6s003 (D -2450000) ~  7emee g . p . . p. . p . .
* Planet g having a period of 12.35 days, and black line is the weighted mean depth with its 16 and 20 confidence in shades grey. Top
ST : Right: Same as Top left superimposed with 10 bar model spectra from Lincowski et al. 2018.
common origin is unlikely Figure 5. Top: Output from the MCMC, transit : : -
’ : ' Bottom Left: Same as Top Right but for TRAPPIST-1e and different models. Bottom Right: Zoom of
* Could be two distinct transiting objects Ela';q??Lerughtger:w;’tﬁrﬁha"s stLuctures. EOHO"’: the plot presented on the Bottom left around SPITZER channels.
ot of the it of the two orphans events.
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