
including signatures of methane, water vapor, and haze
(Burrows2014; Marley et al.2014).

In spite of the incredible technological challenges, there are
multiple planned or in-development space-based missions that
would be capable of high-contrast imaging of exoplanets in
re� ected light. First among these will be NASA’s Wide-Field
InfraRed Survey Telescope(WFIRST; Spergel et al.2013),
which was identi� ed as the top priority space mission in the
2010 National Academy of Sciences Decadal Survey of
Astronomy and Astrophysics.12 The WFIRST mission will
carry a coronagraphic instrument(CGI) with imaging cap-
ability and a visible-light integral� eld spectrograph of
wavelength resolution� 50 (Balasubramanian et al.2016; Cady
et al. 2016; Noecker et al.2016; Seo et al.2016; Trauger
et al.2016; Groff et al.2018). Although envisioned primarily
as a technology demonstrator, it may study the atmospheres of
relatively cool gas giant exoplanets that have been previously
detected using the radial velocity technique(Traub et al.2016).

While WFIRSTcould also have some capability to survey
stars in the solar neighborhood for lower-mass planetary
companions(Burrows2014; Greco & Burrows2015; Spergel
et al.2015; Robinson et al.2016; Savransky & Garrett2016), it
is anticipated that the core optical throughput of theWFIRST
CGI will be low for planetary signals. This stems primarily
from the complexities of accommodating forWFIRST�s on-axis
secondary mirror and support structures within the high-
contrast instruments(Krist et al.2016; Traub et al.2016). Low
throughput drives long requisite integration times, thereby
likely making spectroscopic observations of smaller, less-bright
worlds (such as super-Earth exoplanets) unfeasible except
around the very closest stars(Robinson et al.2016). However,
if the WFIRSTspacecraft were to be paired with an external
starshade(Cash2006; Kasdin et al.2012), the CGI can be
operated in a direct mode without coronagraphic masks,
substantially increasing throughput. High-contrast imaging of
sub-Neptune and terrestrial-sized exoplanets may then become
possible. The feasibility of a starshade“rendezvous” with the
WFIRST spacecraft is under active investigation(Seager
et al.2015; Crill & Siegler 2017).

In advance of the 2020 astronomy and astrophysics decadal
survey, several large-scale space-based mission concepts are
being studied.13 Of these, two have a strong focus on the
characterization of rocky exoplanets with direct imaging: the
Habitable Exoplanet Imaging Mission(HabEx; Mennesson
et al. 2016) and the Large Ultra-Violet/Optical/InfraRed
Surveyor(LUVOIR; Peterson et al.2017). HabExandLUVOIR
are incorporating aspects of design that would allow the
detection of water vapor and biosignatures on planets in the
habitable zones of nearby Sun-like stars. It is therefore timely
and critical that we explore observational approaches that
maximize science yield during the development of these large-
scale mission concepts, as well as theWFIRSTrendezvous
concept. To accomplish this, we must perform atmospheric and
instrument modeling to simulate the types of spectra we can
expect to measure, and we must develop tools to infer planetary
properties from these simulated observations.

Traditionally, the comparison to a limited range of forward
models has been used to infer atmospheric properties(such as
temperature structure and gas abundances) from spectral

observations. This involves iterating to a radiative-convective
solution for a given set of planetary parameters(e.g., gravity,
metallicity, equilibrium abundances, incident� ux), and can
include detailed treatment of aerosols, chemistry, and dynamics
within the model atmosphere(Marley & Robinson2015). The
goal is to generate a spectrum that matches the available data
and thus offers one potential explanation for the world’s
atmospheric state(e.g., Konopacky et al.2013; Barman
et al. 2015; Macintosh et al.2015). A more data-driven
interpretation of atmospheric observations is accomplished
through inverse modeling, or retrievals. Developed for solar
system studies and remote sensing(e.g., Rodgers1976; Irwin
et al. 2008), retrievals have become a valuable tool in
constraining our understanding of the atmospheres of transiting
exoplanets. Early exoplanet retrieval work invoked grid-based
optimization schemes(Madhusudhan & Seager2009), while
subsequent works have taken advantage of Bayesian inference
with methods such as optimal estimation and Markov chain
Monte Carlo (MCMC; e.g., Benneke & Seager2012; Lee
et al.2012; Line et al.2013).

Several studies have examined the hypothetical yield from
characterizing giant exoplanets observed with a space-based
coronagraph(such as WFIRST) with retrieval techniques.
Marley et al.(2014), for example, modeled spectra we could
expect from known radial velocity gas giants if observed by the
WFIRSTCGI. Given the diversity of cool giant planets, the
model spectra have a variety of input assumptions for clouds,
surface gravity, and atmospheric metallicity. Marley et al.
(2014) then applied retrieval methods to these synthetic spectra,
enabling the exploration of how well atmospheric parameters
are constrained under varying quality of data. Lupu et al.
(2016) further investigated the feasibility of characterizing cool
giant planet atmospheres through retrieval, focusing on the
ability to constrain the CH4 abundance and cloud properties.
The systematic study of the impact of conditions like signal-to-
noise ratios(S/ Ns) or wavelength resolution is essential to
quantifying the scienti� c return of these re� ected-light
observations. Nayak et al.(2017) considered the impact of an
unknown phase angle on the inference of properties such as
planet radius and gravity. In all of these studies, the S/ N of the
data has a signi� cant in� uence on the constraints of atmo-
spheric properties.

Previous work on smaller planets in the context of possible
future space missions includes von Paris et al.(2013), who
synthesized infrared emission observations of a cloud-free,
directly imaged Earth twin and employed a least-squares
approach and� 2 maps to perform retrievals and explore
parameter space(considering the effects of instrument resolu-
tion and S/ Ns). A collection of recent studies(Mawet
et al.2017; Wang et al.2017a, 2017b) examined atmospheric
species detection using“high-dispersion coronagraphy,” which
couples starlight-suppression technologies with high-resolution
spectroscopy. In these studies, simulated observations(typi-
cally at spectral resolutions,R�= �� / Δ� , of many hundreds to
tens of thousands) are cross-correlated with template molecular
opacity spectra to explore the feasibility of species detection.
While this novel approach can yield detections of key
atmospheric constituents, the abundance of these atmospheric
species cannot be robustly constrained.

To date, there still does not exist a systematic study of the
atmospheric characterization of small exoplanets using retrieval
techniques on re� ected-light observations at spectral

12 http:// sites.nationalacademies.org/ bpa/ bpa_049810
13 https:// science.nasa.gov/ astrophysics/ 2020-decadal-survey-planning
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case where there is no oxygen detection. The corresponding set
of data points is shown as well. This highlights the fact that
single noise instances can mislead our interpretation and the
bene� t of having many noise instances run to obtain a more
comprehensive understanding of the state of an atmosphere.

To summarize the noise instance results, we concatenate
samples from the last 1000 steps in each noise instance and
construct an averaged set of posteriors. We are able to do this
because the noise instances are equally likely, having been
drawn in the same manner from a Gaussian with set parameters
(i.e., the same S/ N as the standard deviation). In Figure17, we
plot the combined posteriors of the 10 noise instances of
R�= �70, S/ N�= �15 and compare them to the posterior from the
last 5000 steps of the nonrandomized data case. We illustrate
the same comparison forR�= �140, S/ N�= �10 in Figure18. We
overplot the truth values, as well as the 68% con� dence interval
and median value, for each parameter from the combined
noise-instances posterior and the nonrandomized data posterior.

Figure 12.Comparing 1D marginalized posterior distributions for all parameters for all S/ N cases ofR�= �140. See Table5 for the corresponding median retrieved
value with uncertainties that indicates the 68% con� dence interval. The overplotted dashed line represents the� ducial values from Table1.

Table 6
WFIRSTRendezvous Retrieval Results, with Median Value and 1


Uncertainties of the Parameters

Parameter Input S/ N�= �5 S/ N�= �10 S/ N�= �15 S/ N�= �20

log H O2 Š2.52 4.94 2.05
2.35�� ��

�� 4.89 2.11
2.48�� ��

�� 4.03 2.52
1.87�� ��

�� 3.11 1.71
1.17�� ��

��

log P0 0.0 0.16 0.80
1.32�� ��

�� 0.19 0.71
1.03�� ��

�� 0.03 0.74
1.16

��
�� 0.45 0.85

1.01
��
��

log O3 Š6.15 7.66 1.59
1.65�� ��

�� 7.53 1.66
1.54�� ��

�� 7.16 1.66
1.19�� ��

�� 6.80 1.30
0.94�� ��

��

log O2 Š0.68 5.05 3.39
3.26�� ��

�� 4.89 3.54
3.43�� ��

�� 3.43 4.41
2.50�� ��

�� 2.26 3.88
1.71�� ��

��

log P0 0.0 0.16 0.80
1.32�� ��

�� 0.19 0.71
1.03�� ��

�� 0.03 0.74
1.16

��
�� 0.45 0.85

1.01
��
��

Rp 1.0 1.13 0.50
1.60

��
�� 1.13 0.48

1.27
��
�� 1.02 0.38

1.10
��
�� 0.80 0.19

0.81
��
��

glog 0.99 1.42 0.82
0.42

��
�� 1.45 0.75

0.41
��
�� 1.41 0.83

0.43
��
�� 1.26 0.83

0.52
��
��

Alog s Š1.3 0.89 0.74
0.63�� ��

�� 0.84 0.70
0.56�� ��

�� 0.95 0.68
0.64�� ��

�� 0.76 0.79
0.53�� ��

��

plog t Š0.22 1.26 0.52
0.98�� ��

�� 1.24 0.55
0.83�� ��

�� 1.23 0.57
0.84�� ��

�� 0.84 0.73
0.89�� ��

��

dplog Š1.0 1.75 0.87
1.16�� ��

�� 1.70 0.87
1.12�� ��

�� 1.46 1.06
1.14�� ��

�� 1.49 1.03
1.49�� ��

��

log �U 1.0 0.03 1.39
1.33

��
�� 0.05 1.40

1.42
��
�� 0.61 1.55

0.94
��
�� 0.99 1.44

0.73
��
��

flog c Š0.3 1.41 1.07
0.96�� ��

�� 1.42 1.07
1.00�� ��

�� 0.82 1.28
0.60�� ��

�� 0.58 0.97
0.41�� ��

��
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For all parameters in both theR�= �70 andR�= �140 cases,
we � nd that the average posterior from the 10 noise instances
agrees with the posterior from the nonrandomized data set
qualitatively. Their medians and 68% con� dence interval
ranges are also similar with signi� cant overlap. The overall
conclusions we can draw from the average posteriors do not
appear to differ much from those using the nonrandomized data
set posteriors.

5.3. Implications for Future Direct-imaging Missions

Future space-based direct-imaging missions will have a
diversity of goals for exoplanet studies and will likely
emphasize the detection and characterization of Earth-like
exoplanets. For the detection of oxygen and ozone—which are
key biosignature gases—in the atmospheres of Earth twins, our
results indicate that spectra at a minimum characteristic S/ N of

10 will suf� ce if atR�= �140, while data at an S/ N of at least
15–20 would be needed atR�= �70. For aWFIRSTrendezvous-
like observing setup, these gases would only be weakly
detected, even at an S/ N of 20. Methane, which is another
important biosignature gas, has no strong signatures in the
visible wavelength range for the modern Earth, so we did not
consider detection of this gas. Thus, we could not use our
simulated data and retrievals to argue for detections of
atmospheric chemical disequilibrium(Sagan et al.1993;
Krissansen-Totton et al.2016).

Key habitability indicators include atmospheric water vapor
and surface pressure. Detecting the former requires an S/ N of
15–20 atR�= �70 but only an S/ N of 10 atR�= �140. Surface
pressure can be constrained to within an order of magnitude for
S/ N�� �15 atR�= �140, although the overall lack of temperature
information in these re� ected-light spectra would make it
impossible to use pressure/ temperature data to argue for

Figure 13. Comparing 1D marginalized posterior distributions for all parameters for all S/ N cases of aWFIRSTrendezvous scenario. See Table6 for the
corresponding median retrieved value with uncertainties that indicates the 68% con� dence interval. The overplotted dashed line represents the� ducial values from
Table1.
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habitability(Robinson2017). Surface temperature information
may then need to come from climate-modeling investigations
that are constrained by retrieved gas mixing ratios.

For all of our observing setups, the data yield detections of,
and in some cases constraints on, the planetary radius. Except
at an S/ N of 20 for R�= �70 or S/ N�> �15 for R�= �140, the
posterior distributions are not well enough constrained to
distinguish an Earth/ super-Earth(Rp�< �1.5R� ) from a mini-
Neptune based on size alone, although the data do rule out
planetary sizes larger than Neptune. Additional atmospheric
information (e.g., composition) could potentially be used to
help distinguish between terrestrial planets and mini-Neptunes.

These� ndings are consistent with the gas giant–focused work
of Nayak et al.(2017), who noted that observations at multiple
phase angles can also help to better constrain planetary size.
Our overall lack of surface gravity constraints, paired with the
weak constraints on planet size, implies that we do not have a
constraint on the planetary mass. Follow-up(or precursor)
radial velocity observations(or, potentially, astrometric
observations) could offer additional constraints on planet mass.

We can make rough comparisons of ourR–S/ N results to
those of Brandt & Spiegel(2014), who used minimally
parametric models to investigate detections of O2 and H O2
for Earth twins. These comparisons are not direct, however, as
Brandt & Spiegel(2014) were � tting for fewer parameters(8
versus our 11) and also only assumed that the S/ N was
proportional to planetary re� ectance(versus our more compli-
cated scaling, as shown in Figure6). For O2, Brandt & Spiegel
(2014) found R�= �150 and S/ N�= �6 for a 90% detection
probability, which is consistent with ourR�= �140 posteriors
moving from a nondetection at S/ N�= �5 to a detection at
S/ N�= �10. When investigatingH O2 , Brandt & Spiegel(2014)
foundR�= �40 and S/ N�= �7.5 orR�= �150 and S/ N�= �3.3 for a
90% detection probability. Using Figure6 to scale our S/ Ns to
890�nm (i.e., to the continuum just shortward of the 950 nm
water vapor band), atR�= �50, we only� nd a weak detection of
H O2 for S/ N890nm�= �10, and atR�= �140, we transition from a
water vapor nondetection to a detection between an S/ N890nm

of 2.5–5. Taken all together, these comparisons indicate that we
agree with Brandt & Spiegel(2014) at higher spectral
resolution(R= 140–150) but that detection ofH O2 at lower

Figure 14.Spectra generated with 1000 randomly drawn sets of parameters sampled with the retrievals plotted with(left) R�= �70 data for S/ N�= �5, 10, 15, and 20;
(middle) R�= �140 data for S/ N�= �5, 10, 15, and 20; and(right) WFIRSTrendezvous data at S/ N�= �5, 10, 15, and 20. Here“1” and“2” mark the span of theWFIRST
Design Cycle 7� lters(see Table2). Lighter contours(green) represent 2
 � ts, while darker contours(blue) represent 1
 � ts. The solid line represents the median� t.

Table 7
R�= �70: Strength of Detection for a Set of Key Parameters as a Function of

S/ N

Parameter S/ N�= �5 S/ N�= �10 S/ N�= �15 S/ N�= �20

H O2 Š Š W D
O3 Š W W D
O2 Š Š W D
P0 W W W D
Rp D D D C

Note. Weak detection(“W”) corresponds to a posterior distribution with a
marked peak but also a substantial tail toward extreme values. Detection(“D”)
refers to a peaked posterior without tails toward extreme values but with a 1

width larger than an order of magnitude. Constraint(“C”) is de� ned as a
peaked posterior distribution with a 1
 width less than an order of magnitude.
Nondetections, or� at posteriors across the entire(or nearly entire) prior range,
are marked with“Š.”
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spectral resolution(R= 50) will likely require higher S/ Ns
than originally indicated.

The discussion above emphasizes mere detections, not
constraints (which, again, we de� ne as having peaked
posterior distributions with 1
 widths less than an order of
magnitude). While uncertain, we anticipate that characteriza-
tion of climate, habitability, and life likely require con-
straints, not simple detections. Here, as is shown in Table8,
only R�= �140 and S/ N = 20 observations offer the
appropriate constraints. Thus, future space-based high-
contrast imaging missions with goals of characterizing
Earth-like planetary environments are likely to need to
achieveR�= �140 and S/ N�= �20 observations(or better). Of
course, combining near-infrared capabilities, which would
provide access to additional gasabsorption bands, may help
loosen these requirements.

Figure 15.Comparing the posteriors for all parameters for S/ N�= �10 cases of theWFIRSTrendezvous andR�= �70 and�140. The overplotted dashed line represents
the � ducial values from Table1.

Table 8
R�= �140: Strength of Detection for a Set of Key Parameters as a Function of

S/ N

Parameter S/ N�= �5 S/ N�= �10 S/ N�= �15 S/ N�= �20

H O2 Š D D C
O3 Š D C C
O2 Š D D C
P0 W D C C
Rp D D C C

Note. Weak detection(“W”) corresponds to a posterior distribution with a
marked peak but also a substantial tail toward extreme values. Detection(“D”)
refers to a peaked posterior without tails toward extreme values but with a 1

width larger than an order of magnitude. Constraint(“C”) is de� ned as a
peaked posterior distribution with a 1
 width less than an order of magnitude.
Nondetections, or� at posteriors across the entire(or nearly entire) prior range,
are marked with“Š.”
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