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Talk Outline

e Gas giant atmospheres

* The transition to ‘metallic’ atmospheres

* Atmospheric escape processes

* Venus water loss and the runaway greenhouse
e Cold-trapping and climate on Mars (and Earth)
* |cy satellite / exomoon water loss

* Abiotic oxygen production on exoplanets
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Elemental Abundances
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Gas Giant Planets

Molecular hydrogen

(helium depleted) Helium rain layer

* Icy/rocky core formation, A
followed by capture of Mol
H,/He envelope from = —
nebula envelope droplets

* Core likely dissolves into
envelope on

Ju pite r/Satu rn Dissolution and upward mixing
subsequently: there are Dense rocky core
no solid boundaries Wahl et al., 2017

anywhere (although
maybe some layered
convection)

https://oxfordre.com/planetaryscience/view/10.1093/acrefore/9780190647926.001.0001/acrefore-9780190647926-e-175



Gas Giant Planets

* H,-dominated so in upper
atmosphere equilibrium
species are CH,, H,0, NH; etc.

* Modified by condensation

Processes

* Modified by photochemistry,

e.g.

CH, + hv > C,H, + 2H

—

C,H + H, 2 2CH,
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Gas Giant Habitability:
A wonderful idea...

Adolf Schaller



Gas Giant Habitability:
A wonderful idea... entirely
unsupported by evidence

Adolf Schaller



The Rocky Planet Transition

* Planets with radius > about
1.6 rg usually retain a
hydrogen envelope; those
with smaller radii do not
(e.g. Rogers, 2016)

* Transition corresponds to
5-10 M, range

* Evolution of higher Z
‘metallic’ atmospheres is
generally much more
complex and nonlinear!
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Elemental Electronegativities

V | Cr | Man| Fe | Co| Ni | Cu
16| 16| 16| 18| 18| 18| 19

Nb [ Mo |Te | Bu | Rh | Pd | Ag
16 |18 |18 22|22 |22]|19

Ta | W | Re | Os | Ir | Pt | Au
15|17 |19 | 22| 22|22 |24

Data from Linus Pauling. “The Nature of the Chemical Bond,” 3d ed., Cornell University
Press, Ithaca, N.Y., 1960.

e.g. for H,0:

https://en.wikipedia.org/wiki/Electronegativity#/media/File:Electrostatic_Potential.jpg



Oxidizing vs. reducing species

oxidation is loss of
electrons,
reduction is gain

reduced oxidized
iron (Fe®) iron (Fe3*)

Example:
4Fe + 30, = 2Fe, 04

Fe electronegativity ~ 1.8
O electronegativity ~ 3.5

O oxidizes Fe from Fe® to Fe3* reduced oxidized
surface (Titan) surface (Mars)



Galactic elemental abundances + gravity =2
oxidation of rocky/icy planet surfaces

l

The 8 most abundant elements H

‘ . O, C, N volatiles

.5
electronegativity [Pauling Scale]

Wordsworth, Schaefer & Fischer, 2018



(km)

ALTITUDE

Ganymede

17 Ice crust

Saline ocean
Ice mantle

Rocky mantle

oD x10® I
-

NUMBER DENSITY (em” ’)
Yung & McEIroy 1977

Wavelength (A) Hall+ 1998

1300 1320 1340 1360
Ganymede Trailing (96 JUN 21) O(l) 1356A
airglow

8
6
4

4

0 hﬂ-!" T I-LIII!-JIL'!n-_!n-Il- Tl .‘.-rﬂll.m!- 0
. - - - Jju =0 oy - 7 - - -~ = = LI ]

Quick quiz: Why is Titan so different?




Physics of atmospheric escape

e Can start by thinking about

. . . . 2G M
escape velocity of individual Ve =1/ —
gas molecule /

 [2kpT
 Compare with thermal velocity e " VTm

to get escape parameter x
* Jeans escape for high x values




Key atmospheric escape processes

* Impact-driven escape:
HydrodY]namic blowaway of
atmosphere by bolide impacts.
Net atmospheric loss only
under certain conditions.

e XUV-driven hydrodynamic
escape: High-energy stellar
photons power outflow. A
major player early on (we
think!)

* Non-thermal processes: Varied,
complex, generally most
important for elements heavier
than He
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Key atmospheric escape processes

by — ¢ Fxuv
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e XUV-driven hydrodynamic
escape: High-energy stellar
photons power outflow. A XV photons & 2
major player early on (we
think!)

Y
Uf/f/%a

100
b) A [nm]



Hydrodynamic drag of heavier species

* Planetary upper atmospheres are not well-
mixed: lighter species expand upwards
above the homopause

* Nonetheless, for a high enough H escape
flux, heavier species can be dragged along
too during XUV-driven escape
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peak XUV absorption region

n~10% — 10° atoms/cm3

H, O dominated

MOLECULAR DIFFUSION

1

peak H,0 UV photodissociation region

homopause

n~1x10*3 molecules/cm?

!
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H,0, O, dominated
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n~2.5%x108 molecules/cm?3

Wordsworth, Schaefer & Fischer 2018
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Enriched deuterium: a smoking
gun for past atmospheric escape?
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Venus Water Loss

* Habitable early Venus...
maybe up to 0.7 Ga? (e.g.

Way et al. 2016)
* Then, runaway

greenhouse event

* Oceans boil off, H,0
reaches high atmosphere,
photolyzes, and H is lost to

space

e But where is the oxygen?
Most escape models
indicate substantial
amounts should be left
behind (e.g. Kasting &

Pollack, 1983)
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Venus Water LosS

* Another possibility: early
magma ocean phase

* Fits noble gas isotopic ratios,
estimated surface / interior
oxidation state

9 4 15 km

Non-Equilibrium
Region

Hematite
CO +0.5 0y 4> CO9

Quench Region
CO +0.5 09 — CO9

Plains with
Magnetite

Equilibrium Region l -5km

Fegley et al. (1997)

Magma Crystallization <20 bar H,0, hydrodynamic
ocean phase completion escape collapse — Dry
300 bar H,0 atmosphere
Hydrodynamlc S
osceRe ATMOSPHERE 1

Water exsolution

Impacting
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Accretion of 5 TO of water from  Accretion of 0.1 TO of water from
embryos comets
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- Fractionation of Ne to present (few)

- Non-thermal escape of H,0
contained in a GEL of a few

meters depth
value - Build up of a =15 bar O, - Fractionation of H to present
- Build up of a transient massive O, | atmosphere value

atmosphere (a few 100 bars) - Subsequent loss of O, to

- Loss of O, to the magma ocean by| the rock surface by iron
iron oxidation oxidation

- Continued loss of O, to the
rock surface by iron oxidation

Magma ocean
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Gillmann et al. (2009)
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Venus Water LosS

l XUV l XUV

)| H20 photolysis
H2 lost H lost to space

to space

Reducing steam atmosphere Steam atmosphere

N, C absorbed N2, CO2 outgassed O absorbed

R 2

1 bar N2 atmosphere

C02, N2 rich atmosphere

surface liquid water

V @

Wordsworth 2016, EPSL
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Magma Crystallization <20 bar H,0, hydrodynamic
ocean phase completion escape collapse — Dry
\ 300 bar H,0 atmosphere
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b)
Accretion of 5 TO of water from  Accretion of 0.1 TO of water from
embryos comets

- Hydrodynamic escape of hydrogen

- Hydrodynamic escape of
(all) and oxygen (most)

hydrogen (all) and oxygen

- Non-thermal escape of H,0
contained in a GEL of a few

- Fractionation of Ne to present (few) meters depth
value - Build up of a =15 bar O, - Fractionation of H to present
- Build up of a transient massive O, | atmosphere value

atmosphere (a few 100 bars) - Subsequent loss of O, to

- Loss of O, to the magma ocean by| the rock surface by iron
iron oxidation oxidation

- Continued loss of O, to the
rock surface by iron oxidation

Magma ocean
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500 Myr-Now

Gillmann et al. (2009)
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Earth Water Loss

Current 1 bar atmosphere
keeps H,O cold-trapped in the
troposphere

Stratosphere remains dry, very
little hydrogen is lost

Was this always the case?
What role did H,/CH, loss play?
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Genda & lkoma (2008) [see also Zahnle et al. 2018]
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nature

geoscience LETTERS

PUBLISHED ONLINE: 9 MAY 2016 | DOI: 10.1038/NGEO2713

Earth's air pressure 2.7 billion years ago
constrained to less than half of modern levels

Sanjoy M. Som™", Roger Buick', James W. Hagadorn?, Tim S. Blake3, John M. Perreault'’,
Jelte P. Harnmeijer'" and David C. Cat

How the Earth stayed warm several billion y
the Sun was considerably fainter is the long-sta
of the ‘faint young Sun paradox'. Because of




Mars Water Loss

. MSL drill

 H,O is also generally cold-trapped roverdrif core

(tfunner atmosphere, but colder surface) o e - 14 c
* In addition, photochemical feedbacks v N, 7

prevent oxidation when H,0 photolysed 5 0 Tlaoa 12 E

In lower atmosphere 2 RN
* However, this can be circumvented by 5 s " F

intense H%O lofting events during dust g 0

StIOEr(])qlsS()C affin etal. 2017; Heavens et 3 0 % 150 150 180 210 200 270 30 %0 W 30

al. L
* D/H ratio suggests early H,0 inventory .

was several times greater than today 0. Festavstiiboms )
* Early Martian atmosphere could have - LT

been more reducing, with possible e 7 £l

climate implications (e.g. Wordsworth et s o]

al. 2013; Ramirez et al. 2014; Batalha et 2 ol =

al. 2016) =
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http://photojournal.jpl.nasa.gov/catalog/PIA16834 Hea
vens et al.,, 2018
https://www.pnnl.gov/science/highlights/highlight.asp?id=871 !



Flowing water on early Mars
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Hydrodynamic Water Loss from lcy

Satellites / Exomoons
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Using Atmospheric Sulfur to Diagnose
Surface Liquid Water

NASA
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How far could water loss and abiotic O,
buildup proceed on exoplanets?

 M-stars have an extended
pre-main sequence phase

* M-stars have high XUV levels,
stellar activity 2 enhanced
atmospheric loss (likely
including heavy gases like N,)

* M-star planets should suffer
significant H loss + oxidation

UV/FXUV'+
w

* Will planets around them
develop abiotic O,
atmospheres?

Log Fx

0.1
Time (Gyr)

Luger & Barnes 2016



How far could water loss and abiotic O,
buildup proceed on exoplanets?

-
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total potential oxidation
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How far could water loss and abiotic O,
buildup proceed on exoplanets?

Planet Abiotic O, buildup potential Remarks
Prox Cen b Low received stellar flux, Earth-like mass.
GJ1132b HIGH High stellar flux: planet is likely sterile.
LHS1140b LOW Low stellar flux, high planet mass.
TRAPPIST-1b High stellar flux: planet is likely sterile.
TRAPPIST-1c High stellar flux.
TRAPPIST-1d Moderate stellar flux.
TRAPPIST-1e Moderate stellar flux.
TRAPPIST-1f LOW Low stellar flux.
TRAPPIST-1g LOW Low stellar flux.
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Snellen et al. 2013



A Redox Goldilocks Zone

OVER-OXIDIZED Both oxidized and reduced.
surface/atmosphere reservoirs

‘-' UNDER-OXIDIZED

Fertile conditions for biogenesis...




Conclusions

e Gas giant atmospheres are not in chemical equilibrium,
but dilution makes them poor places to search for life

* Rocky planet atmospheres tend to be out of chemical
equilibrium and relatively oxidized in galactic terms
because H escapes to space and Fe sinks to the core,
leaving O-rich volatile species at the surface

* Venus and Mars both underwent extensive water loss +
surface oxidation. Earth perhaps underwent less, thanks
to its efficient N, cold trap, but questions remain.

e Extreme oxidation may occur on many Earth-like
exoplanets. This has major implications for false
biosignatures and for the likelihood of prebiotic
chemistry / biogenesis



Impact-Generated Atmospheres over Titan, Ganymede, and Callisto
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The competition between impact erosion and impact supply of
volatiles to planetary atmospheres can determine whether a planet
or satellite accumulates an atmosphere. In the absence of other
processes (e.g., outgassing), we find either that a planetary atmo-
sphere should be thick, or that there should be no atmosphere at
all. The boundary between the two extreme cases is set by the
mass and velocity distributions and intrinsic volatile content of the
impactors. We apply our model specifically to Titan, Callisto, and
Ganymede. The impacting population is identified with comets,
either in the form of stray Uranus—Neptune planetesimals or as
dislodged Kuiper belt comets. Systematically lower impact veloci-
ties on Titan allow it to retain a thick atmosphere, while Callisto
and Ganymede get nothing. Titan’s atmosphere may therefore be
an expression of a late-accreting, volatile-rich veneer. An impact
origin for Titan’s atmosphere naturally accounts for the high D/H
ratio it shares with Earth, the carbonaceous meteorites, and Halley.
It also accounts for the general similarity of Titan’s atmosphere to
those of Triton and Pluto, which is otherwise puzzling in view of
the radically different histories and bulk compositions of these
objects. © 1992 Academic Press, Inc.

velocities of incident material. Because Saturn is less mas-
sive than Jupiter, and because Jupiter sits deeper in the
Sun’s gravitational well, the average impact velocity of
stray bodies striking Titan is lower than those striking
Callisto or Ganymede. Other things being equal, the lower
impact velocity allows Titan t~ ==¢ni= ~ hinhas fnntine
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