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Photosynthesis-
The Conversion
of Light Energy
into Chemical
Energy

PS is the source of
all our food and
most of our energy
resources on Earth
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Types of Phototrophic Organisms

Bacteria
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* Photosynthesis is light-
driven redox chemistry.

« Chlorophyll-based
phototrophic organisms
are found only in the
Bacterial and Eukaryal
domains.

« Phototrophs are either
oxygenic (oxygen
evolving) or anoxygenic
(non-oxygen evolving)

 All phototrophic
Eukaryotic chloroplasts
were derived via
endosymbiosis of

Tyeeland IRC cyanobacteria.
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ulfur bacteria
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Photosynthetic

Prokaryotes

There are six seven
known bacterial phyla
with chlorophyll-based
photosynthetic
members.

They have varied
modules of antennas,
reaction centers,
cofactor biosynthesis,
and carbon fixation
pathways.

Each module has a
unique evolutionary
history.

Homann-Marriott and
Blankenship, ARPB (2011)



Oxygenic Photosynthetic Organisms

Antennas
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Oxygenic
phototrophs
have two
RCs working
In tandem.
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Photosynthetic Energy Storage

Energy transfer Electron transfer
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All PS organisms contain a light-gathering antenna system
and an electron-transferring reaction center.
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Extreme diversity of antenna systems strongly suggests multiple independent
evolutionary origins - Adaptation to different photic environments.




Photosynthetic Reaction Centers

Photosystem | (type I) Photosystem Il (type IlI) RC from purple bacteria (type Il)
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Structural conservation of RCs suggests a single
evolutionary origin.




* Chlorophyll is a highly colored molecule that is central to
photosynthesis.

« Light must first be absorbed by chlorophyll or other
pigments before it can be stored as chemical energy.

« Chlorophyll is usually associated with specific proteins.



Chlorophyll Photon Absorption
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Pigment Conjugation and Electronic Properties

Porphyrin Chilorin _ Bacteriochlorin
e Pyrrole-ring reduction:

Decreased size of t-e~ system
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Percentage of transmitted light

Plants are not green, they are Black!

Photosynthetically
active radiation
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PLANT PHYSIOLOGY , Third Edition, Figure 9.3 © 2002 Sinauer Associates, Inc.

Plants absorb
almost all of the
visible light.
They transmit
and reflect light
at longer
wavelengths—
Red Edge.

The red edge
will shift if the
organism
contains a
different type of
pigment.



Excited state redox processes

Redox properties of ground and excited
states of reaction center chlorophyll
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oxidizing | — | Acceptor Donor _t reducing
agent orbital orbital agent
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Light
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Ground-state Excited-state

chlorophyll chlorophyll

« Excited states can be both strong oxidizing and strong
reducing agents--very chemically reactive.

* The primary energy storing step in chlorophyll-based
photosynthesis is the excited state acting as a reductant.



RC energy-kinetic diagrams

Type Il RC Type | RC
purple bacteria oxygenic phototrophs green sulfur bacteria
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These diagrams incorporate both kinetic and thermodynamic
information, and also suggest evolutionary relationships
among photosynthetic reaction centers.

Hohmann-Marriott and Blankenship, (2011) Ann. Rev. Plant Biol.
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Cofactor arrangement in RCs

Cofactors in
all types of

RCs have
the same

. 08 basic

structural
arrangement.
* This strongly
. suggests that
‘XSA they have a
T _» common
_.  evolutionary
history.
*

Orf et al. Photosynth. Res. (2018)



Origin and Early Evolution of PS
* To understand the origin and early evolution of
photosynthesis, must consider mechanisms
and evolution of many subsystems and

Processes.

— Reaction centers (including

— 0O, Evol Center)

— Pigments (Chls, carotenoids, bilins) -
— Antenna complexes a
— Electron transfer pathways ’
— Carbon fixation pathways Q‘
— Photoprotection mechanisms

* Horizontal gene transfer has
been widespread.
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Mosaic Evolution of Photosynthesis

Reaction Q Pigments
Center

(2
AN ¢

Antenna

Photosynthetic Cell
* All photosynthetic organisms are chimeric.

 Different parts of the photosynthetic machinery have distinct
evolutionary histories.

« There is no simple path for “evolution of photosysnthesis”.
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Purple Bacterial Heterodimeric
Type |l Reaction Center

"Special pair" of

@ . bacteriochlorophyll
; »_ " reacts with light

BPh
BPh

The slight structural asymmetry of the reaction center L and
M subunits gives rise to a strong functional asymmetry of
electron transfer pathway and the 2 e- Q,/Qg gate.



Reaction Center Evolution

Insertion-deletion
(Indel) analysis
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Khadka et al. Photosynth. Res., (2018)



Transition to Oxygenic Photosynthesis

Plastid
Origin

Transitional forms

2 N\

Extensive gene
recruitment/HGT

Cyanobacteria

e e o
Gloeobacter

Anoxygenic Photosynthesis ~ [Ime —— Oxygenic Photosynthesis
Raymond and Blankenship BBA (2004)
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Photosystem |l from cyanobacteria

bicarbonate
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Umena et al. (2011)
Nature 473: 55-61



Evolutionary origin of the oxygen
evolution center of Photosystem ||

« Many suggestions have been made for the evolutionary
origin of the OEC.

* These include Mn catalase, Mn minerals, carbon
monoxide dehydrogenase.

. O ) ‘ =~
and Yachandra PNAS (2002)

.- (
() ;
Sauer

Blankenship and Hartman,
TIBS (1998)

Barber Nature Plants (2017)



Origin of Oxygen Evolution

Reaction: 2H,0 —»> O, + 4H"* + 4e-
Changes between the anoxygenic

RC and PS2 are: o170 o
« Aredox potential > 1V, which | emqiD1-A384 e

requires change from BChl (870 ," w0 /\os& ¢ |

nm) to Chl (680 nm) Mnaigh g DL 0342

» A charge-accumulating system to | Y 5 o
interface 1 e- photochemistry to R ouzes .3
4 e- oxygen chemistry - Mn ' i,
cluster - Singular event! 2‘;‘ D1-H337
A much more complex protein
complement

« Linked photosystems ?? Umena et al.

Nature (2011)



Mechanism of O, production
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« Laser flashes coupled with X-ray pulses shows structural
changes associated with S state advances.
« Details of mechanism are not yet certain.
Suga et al. Nature 533: 131-135 (2017)



Cyanobacteria

S;n»echocystisCC680§

« The cyanobacteria are the
only group of oxygenic PS
prokaryotes.

* They contain both Type |
and Type Il RCs.

« They are the source of
chloroplasts via
endosymbiosis.

Type I RC Type | RC
FeS
Benson.CaMn cycle <__P\S!:typo
ICyanobacteria | - Cyt byf o
| = ' -

Liu et al. Science (2013)




Cyanobacterial Origins

On the origins of oxygenic
photosynthesis and aerobic
respiration in Cyanobacteria

Rochelle M. Soo,'* James Hemp,?* Donovan H. Parks,"
Woodward W. Fischer,?t Philip Hugenholtz'f

Early branching
cyanobacteria show
no trace of having
ever had the abiilty to
do photosynthesis.

Science (201 7) Nonphotosynthetic Cyanobacteria Photosynthetic Cyanobacteria
Photosynthetic &,
. )
cyanobacteria probably “%*%0 &
arose by horizontal gene TN N A
transfer of PS genes from R \

existing phototrophs to

bring Type | and Type |I § HGT of photosynthesis

HGT of aerobic respiration

reaction centers together.

Nonphotosynthetic
ancestor of Cyanobacteria

Blankenship Science (2017)



Is oxygenic photosynthesis an
inevitable evolutionary development?

* Oxygenic photosynthesis is
mechanistically much more
complex than anoxygenic PS.

 ltis very unlikely to be an early D1-D170 W3@!
form of PS on any world. ""

« Oxygenic PS uses a ubiquitous
electron donor molecule, H,0,
and produces a high energy form
of stored products.

 ltis so efficient that it is likely to
be the dominant form of PS, 501 —
providing that the very high barrier
to its evolution can be Umena et al.
surmounted. Nature (2011)
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What is the long wavelength limit for
oxygenic photosynthesis?

The red limit for oxygenic PS using the
familiar two photosystem architecture is
not certain but is probably about 750 nm.
Using a three or more photosystem
architecture, it could be at significantly
longer wavelengths.

Anoxygenic PS works out to 1000 nm.
Depending on the type of photopigments
used, the red edge might be in the visible
or near IR or there may be multiple red
edges or a gradual one.

It is difficult to see how photosynthesis
could be driven using infrared light that
only excites vibrational transitions.
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Origin and Evolution of Photosynthesis-
Remaining Challenges

Nature of the earliest PS
systems not known.

Significance of gene
duplications in RC
evolution not understood.

Evolutionary origin of the
oxygen evolving complex
not known.

Not certain how two
photosystems were linked
In series.
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