Microlensing Planets: Modeling and Unique Solutions

Jennifer Yee

Center for Astrophysics

How Do I Figure Out If It's Really a Planet? Jennifer Yee Center for Astrophysics

Why is this a Planet Candidate?

Part I: Relating Caustics/Magnification Patterns to Light Curves

A model with mass ratio (q) = $0.005 = 5 M_{Jup}/M_{Sun}$

15 7/702

Caustic Reflects the Full Magnification Pattern

Caustic

There is a strong magnification change at a **fold**.

A **cusp** creates a spike in magnification outside the caustic. Magnification Curve

Caustics and Trajectory

Two cusps \rightarrow two bumps

Light curve can be explained by a planet! But...

There are TWO images \rightarrow TWO solutions

separation = s = 0.55 s = 1.83 "close" "wide"

Which Trajectories Produce a Similar Light curve?

Which Trajectories Produce a Similar Light curve?

Shin et al. 2012 ApJ 746, 127

Shin et al. 2012 ApJ 746, 127

Symmetries/Similarities in the Magnification Pattern Make It Non-Trivial to Solve a Light curve

Part II: Techniques for Finding the Right Model

```
The \chi^2 surface is complex.
```


A simple downhill algorithm won't work.

A simple downhill algorithm won't work.

A simple downhill algorithm won't work.

One Approach: Markov Chain Monte Carlo

Markov Chain Monte Carlo (Random Walk)

• Advantage: It will eventually explore all of parameter space including multiple minima.

• Disadvantage: It may take the age of the universe to do it.

Hybrid Approach: Grid Search in s, q, angle

If the grid is too sparse, solutions are missed.

If the grid is too dense, it takes too long (inefficient).

MCMC + Grid Search

- Advantage: It can improve efficiency of MCMC alone (fewer parameters)
- Advantage: Good for a blind, systematic search

• Disadvantage: There is an art to selecting the grid size

Alternative Approach: Light Curve Library

Light Curve Library

- Advantage: Optimal sampling of parameter space
 - Less likely to miss solutions
 - Can be more efficient

• Disadvantage: Significant effort to set up. Requires a deep knowledge of caustic structures.

Partial data = More degeneracies

Summary

- The magnification pattern + source trajectory determines the light curve
- Symmetries/similarities in the magnification make it hard to find the true solution
- Methods for searching for the correct model:
 - MCMC + grid search
 - Light curve library

Part III: Resources

Resources: Modeling

- MulensModel: Python, generates models, includes examples <u>https://github.com/rpoleski/MulensModel/releases/tag/v1.4.0</u>
- pyLIMA: Python, fits models to data, includes examples <u>https://github.com/ebachelet/pyLIMA/tree/master/pyLIMA</u>
- VBBL (Valerio Bozza Binary Lensing): C++, generates models <u>http://www.fisica.unisa.it/GravitationAstrophysics/VBBinaryLensing.htm</u>

Resources: Public Data

- Exoplanet Archive: Data from Published Planets https://exoplanetarchive.ipac.caltech.edu/
- Korea Microlensing Telescope Network: Data for Microlensing Events from 2015 and K2C9 data are fully public. <u>http://kmtnet.kasi.re.kr/ulens/</u>
- UKIRT Microlensing Survey: Data for all stars for 2015—2017 campaigns <u>https://exoplanetarchive.ipac.caltech.edu/docs/UKIRTMission.html</u>

Microlensing Data Challenge: "Solve" 293 WFIRSTlike lightcurves http://microlensing-source.org/data-challenge-guidelines/

