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⇒ Transit surveys must monitor thousands of stars at a time.
They find planets in small orbits around large parent stars.
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Example of a BLS:  SuperWASP candidate

Figure credit:  A. Collier Cameron

There are other techniques for transit detection, eg. the Transiting Planet Search 
(TPS, Jenkins 2002), Trend Filtering Analysis (TFA, Kovàcs et al. 2005), 
Schwarzenberg-Czerny (1989, 1996), etc.

BLS works on sparse and unevenly sampled data. 
Beware of window-function effects — often the true signal is the n-th strongest peak.
Does not account for correlated noise. 
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⇒ Find the period with RVs or more photometry

PlanetHunters (Kepler) Wang et al. (2015), MEarth Dittmann et al. (2017), TRAPPIST Gillon et al. (2017)
See also Yee & Gaudi (2008), Uehara et al. (2016), Foreman-Mackey et al. (2016), Schmitt et al. (2017)

Figure from Wang et al. (2015)
“… the number of planets detected by TESS […] 

with P > 25 days will be doubled […]

with P > 250 days will be increased by an order or magnitude”

Villanueva, Dragomir & Gaudi 
(submitted to AAS Journals)

Detected by human eyeballing (eg. PlanetHunters), 
machine learning (see Dittmann et al. 2017, 
Foreman-Mackey et al. 2016)



Photometric 
monitoring

Data processing pipeline

Pipeline identifies planet 
candidates (TCE)

Robo vetting (KOI)

(astrophysical) 
false positiveFollow-up observations 1I:

Radial-velocity monitoring for 
independent confirmation

Human 
vettingConfirmed 

planet

Statistical 
validation

Validated 
planet

Follow-up observations 1:
Reconnaissance spectroscopy,

ground-based photometry,
speckle interferometry, lucky 

imaging, AO imaging

From initial detection 
of a transit

to confirmation or validation 
of a planet



Photometric 
monitoring

Data processing pipeline

Pipeline identifies planet 
candidates (TCE)

Robo vetting (KOI)

(astrophysical) 
false positiveFollow-up observations 1I:

Radial-velocity monitoring for 
independent confirmation

Human 
vettingConfirmed 

planet

Statistical 
validation

Validated 
planet

Follow-up observations 1:
Reconnaissance spectroscopy,

ground-based photometry,
speckle interferometry, lucky 

imaging, AO imaging

From initial detection 
of a transit

to confirmation or validation 
of a planet



Astrophysical scenarios that create transits

Morton et al. 2011, 2012; Santerne et al., 2012,2013; Latham et al. 2009; 
Collier Cameron et al. 2007; Pont et al. 2005 and others

Transiting planets



Astrophysical scenarios that create transits

Morton et al. 2011, 2012; Santerne et al., 2012,2013; Latham et al. 2009; 
Collier Cameron et al. 2007; Pont et al. 2005 and others

Transiting planetsGrazing stellar binaries

Blended stellar binaries
(background eclipsing binaries)

Transiting red/brown dwarfs

Background transiting planet

(astrophysical false positives)
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It is a binary candidate!





It is a planet 
candidate − in a 

multi-planet system



It turned out to 
be Kepler-452b
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From transit detection to planet characterisation

P

χ²

Step 1: Find the global χ² minimum 
using BLS, TPS, TFA, etc.

Step 2: Find the local χ² minimum 
using Ameoba method or equivalent

Step 3: Estimate transit 
parameters and determine 

errors bars using an MCMC

See Jason Eastman’s talk on 
EXOFAST this afternoon
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Flare

Spitzer lightcurve, TRAPPIST-1 Gillon et al. (2017)

Stellar activity can affect transit-measured planet parameters

Stars vary on timescales from minutes to years:

• Oscillations and granulation min-hours

• Flares/coronal mass ejections min-hours 
(esp. M dwarfs)

• Magnetic surface features             
(spots, faculae) stellar rotation period

• Magnetic cycles years

Swedish Telescope, V. HenriquesFull Sun: SDO/HMI continuum

Granulation Sunspots

See Schrijver & Zwaan (2000), 
Hall (2008), Reiners (2012), 
Haywood (2015, Chap. 1) and others

SORCE lightcurve of the Sun over a magnetic cycle



Example: starspots (occulted AND unocculted) can affect estimate of planet radius

Kepler photometry of HAT-P-11 Sanchis-Ojeda et al. (2011)

See also Oshagh et al. (2014), Llama & Shkolnik (2015), Rackham et al. (2017a,b, 2018), Mallonn et al. (2018),  and Apai et al. (2018) 
and references therein.
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Example: starspots (occulted AND unocculted) can affect estimate of planet radius

Sanchis-Ojeda et al. (2011)
Individual transits of HAT-P-11b

Kepler photometry of HAT-P-11 Sanchis-Ojeda et al. (2011)

Occulted spots can 
make transits appear 

shallower

Pont et al. (2008), Pont et al. (2013)

Unocculted spots 
make transits appear 

deeper

See also Oshagh et al. (2014), Llama & Shkolnik (2015), Rackham et al. (2017a,b, 2018), Mallonn et al. (2018),  and Apai et al. (2018) 
and references therein.
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Inaccurate stellar radii bias planet radii

See Huber et al. (2016, 2014, 2013), Petigura et al. (2017), Bastien et al. (2014), 
Dressing & Charbonneau (2013) and others

Revise stellar radius 
down to lower value

The planet gets 
bigger too

An accurate and precise 
measure of the stellar 
parameters is essential

See Alessandro Sozzetti’s 
talk about Gaia on Thursday
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Conclusions

• The probability of finding a transiting planet in a 1AU orbit is 0.5% (goes as R*/a)

• The transit method is very successful at finding short-period planets

• For small planets: look around small stars! 

• Systematics and astrophysical variability mask transits

• It takes a lot of human/telescope resources to go from initial transit detection to 
planet confirmation. “Success rates”: 

• Ground-based WASP/HAT/KELT surveys (initial transit detection→confirmed 
planets) ≈1-2%

• Kepler (TCEs→confirmed/validated planets) ≈15%

• Stellar activity (eg. spots) can bias derived planet parameters

• For accurate and precise planet parameters, we need accurate and precise stellar 
parameters!!!



References for further reading

The basics of exoplanet detection and characterisation: 

Seager, S. & Mallén-Ornelas, G. 2003. ApJ 585, 1038.

Winn 2010. Exoplanets edited by S. Seager, University of Arizona Press, Tucson, AZ, p.55-77, ISBN 
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Reviews on stellar activity: 
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PhD thesis, University of St Andrews. 
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(The talk slides contain many more references about specific topics not listed on this slide.)


