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Sagan on scientific method

Science is more than a body of knowledge;
it is a way of thinking.

The method of science, as stodgy and grumpy as it may seem,
is far more important than the findings of science.

—Carl Sagan
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The weather forecaster

Joint Frequencies of
Actual & Predicted Ithaca Weather

Actual

Prediction Rain Sun

Rain 1/4 1/2

Sun 0 1/4
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The weather forecaster

Joint Frequencies of
Actual & Predicted Pasadena Weather

Actual

Prediction Swelter Sun

Swelter 1/4 1/2

Sun 0 1/4
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The weather forecaster

Joint Frequencies of
Actual & Predicted Weather

Actual

Prediction Rain Sun

Rain 1/4 1/2 3/4

Sun 0 1/4 1/4

1/4 3/4

Forecaster is right only 50% of the time

Observer notes a prediction of ‘Sun’ every day would be right 75%
of the time, and applies for the forecaster’s job

Should the observer get the job?
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Actual

Prediction Rain Sun

Rain 1/4 1/2

Sun 0 1/4

Forecaster: You’ll never be in an unpredicted rain

Observer: You’ll be in an unpredicted rain 1 day out of 4

Lessons (Jaynes 1976)

The value of an inference often lies in its usefulness in the
individual case at hand

Long run performance is not an adequate criterion for
assessing the usefulness of individual case inferences

When long run performance is deemed important, it needs to
be separately evaluated
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Exoplanet discovery questions

• Single-host planet detection:
Is there a planet orbiting this observed star?
(Or: How many planets are orbiting this observed star?)

• Planet demographics:
How many of these N observed stars host a planet?
(Or: What is the planet multiplicity distribution?)
These may be generalized to infer the underlying planet
prevalence

These two questions are inextricably related
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Two styles of answers

Quantify uncertainty about planet detection using probability

But there are two competing understandings of what “probability”
means, and thus how to use it:

• Frequentist (F): P = how often a procedure will be right or
wrong in the long run

• Bayesian (B): P = measure of strength of evidence
for/against rival hypotheses explaining the case at hand
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Exoplanet discovery answers (our agenda)

• Single-host planet detection:

I F : Null hypothesis (“no planet”) significance testing via
maximum likelihood ratio:

• Fixed-threshold Type I (false alarm) & II (false
no-alarm) error probabilities

• p-values [Note: p-value 6= FAP!]

I B: Posterior probability (or odds) for a planet via
marginal likelihood

• Planet demographics:

I B: Hierarchical Bayesian modeling—learning priors from
populations

I F : Adaptive thresholding via p-value distribution (e.g.,
controlling false discovery rate — FDR; out-of-scope!)

• Feedback: Single-host inference ↔ demographic inference
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Plan

1 Frequentist and Bayesian parameter estimation

2 Frequentist and Bayesian model assessment

3 Demographics and detection
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Interpreting probability densities (PDFs)

Frequentist

Probabilities are always (limiting) rates/proportions/frequencies

that quantify variability across a sequence of independent

trials/replications. p(x) describes how the values of x would be

distributed among infinitely many replications:

x

PD
F

x is distributed
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Bayesian

Probability quantifies uncertainty in a single-case inductive

inference. p(x) describes how probability is distributed over the

possible values x might have taken in the single case before us:

x

PD
F

x has a single,
uncertain value

P is distributed
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“The 250-year debate between Bayesians and frequentists is
unusual among philosophical arguments in actually having
important practical consequences.. . . ”

—Brad Efron, ASA President (2005)

Bayes’s theorem:

p(A,B) = p(A)p(B|A)

= p(B)p(A|B)

→ p(A|B) = p(A)
p(B|A)

p(B)
, Bayes’s th.

F : BT is only valid when A and B refer to events—statements about
about the same underlying “random” outcomes (outcomes varying across
replicated trials)

E.g.: A ≡ i , the number of dots shown on a fairly rolled die
B ≡ i ∈ P, the number of dots is a prime number (2, 3, 5)

p(i |P) =
1

6
× Ji ∈ PK

1
2

=
1

3
if i = 2, 3, or 5; else 0
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B: BT is potentially valid for any propositions, so long as we can
assign the required strength-of-argument probabilities. In
particular, for B = specification of data, D, and A = choice of one
of rival hypotheses Hi explaining the data,

p(Hi |D) = p(Hi )
p(D|Hi )

p(D)
= prior× likelihood for Hi

marginal likelihood

E.g.: Laplace (ca. 1818)
computed the posterior
PDF for MSat/M�:

“Applying to them my
formulae of probability I
find that it is a bet of
11,000 against one that
the error of this result is
not 1/100 of its
value. . . ”
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Inference With Parametric Models

Models Mi (i = 1 to N), each with parameters θi , each imply a
sampling dist’n (conditional predictive dist’n for possible data):

p(D|θi ,Mi )

The θi dependence when we fix attention on the observed data is
the likelihood function:

Li (θi ) ≡ p(Dobs|θi ,Mi )

We may be uncertain about i (model uncertainty) or θi (parameter
uncertainty); a hypothesis would specify these

Sometimes I’ll drop the cumbersome subscript: D = Dobs; D often refers
to hypothetical data in F calculations

A model with no free parameters is a simple hypothesis; otherwise it is a
compound or composite hypothesis
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Additive Gaussian noise models
Setup

Data D = {di} are noisy measurements of an underlying
signal f (t; θ) at N sample points {ti}. Let fi (θ) ≡ f (ti ; θ):

di = fi (θ) + εi , εi ∼ Norm(0, σ2
i ), indep.

We seek to learn θ, or to compare different signal or noise
hypotheses (model choice, M). Note: To a statistician, “model” means

everything needed to make predictions—both the signal and noise hypotheses.

Likelihood

p(D|θ,M) =
N∏
i=1

1

σi
√

2π
exp

[
−1

2

(
di − fi (θ)

σi

)2
]

∝ exp

[
−1

2

∑
i

(
di − fi (θ)

σi

)2
]

= exp

[
−χ

2(θ)

2

]
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Posterior

For prior density π(θ) (perhaps uniform. . . ),

p(θ|D,M) ∝ π(θ) exp

[
−χ

2(θ)

2

]
The normalization constant (marginal likelihood) is

p(D|M) =

∫
dθπ(θ) exp

[
−χ

2(θ)

2

]
If you have a least-squares or χ2 code:

• Treat χ2(θ) as −2 logL(θ)

• Bayesian inference amounts to exploration and numerical
integration (by quadrature or Monte Carlo) of
π(θ)e−χ

2(θ)/2

18 / 60



A Simple (?) confidence region
Problem

Estimate the location (mean, µ) of a Gaussian distribution
from a set of N IID samples D = {xi}. Report a region
summarizing the uncertainty.

Here assume std dev’n σ is known; we are uncertain only
about µ

Model

The sampling distribution for any set {xi} is

p({xi}|µ) =
∏
i

1

σ
√

2π
e−(xi−µ)2/2σ2

; σ = 1

∝ e−χ
2(µ)/2

This gives the likelihood function, L(µ) if we set {xi} to the
observed values. The log likelihood is a parabola here.
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Classes of variables—the two spaces

• µ is the unknown we seek to estimate—the parameter. The
parameter space is the space of possible values of µ—here the
real line (perhaps bounded). Hypothesis space is a more
general term.

• A particular set of N data values D = {xi} is a sample. The
sample space is the N-dimensional space of possible samples.

Standard inferences

Let x̄ = 1
N

∑N
i=1 xi .

• “Standard error” (rms error) is σ/
√
N

• “1σ” interval: x̄ ± σ/
√
N with conf. level CL = 68.3%

• “2σ” interval: x̄ ± 2σ/
√
N with CL = 95.4%
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Some simulated data

Take µ = 5 and σ = 4 and N = 16, so σ/
√
N = 1.

What is the CL associated with this interval?

−5 0 5 10 15

5.49 +- 2.0

The confidence level for this interval is 79.0%.
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Two intervals

−5 0 5 10 15

5.49 +- 2.0, CL=79.0%

5.49 +- 2.0, CL=95.4%

• Green interval: x̄ ± 2σ/
√
N

• Blue interval: Let x(k) ≡ k’th order statistic
Report [x(6), x(11)] (i.e., leave out 5 outermost each side)

The point

The (frequentist) confidence level is a property of the
procedure, not of the particular interval reported for a given
dataset
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Performance of intervals

Intervals for 15 datasets

−10 −5 0 5 10 15 20
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Gaussian problem posterior distribution

For the Gaussian example, a bit of algebra (“complete the square”)
gives:

L(µ) ∝
∏
i

exp

[
−(xi − µ)2

2σ2

]

∝ exp

[
−1

2

∑
i

(xi − µ)2

σ2

]

∝ exp

[
− (µ− x̄)2

2(σ/
√
N)2

]
The likelihood is Gaussian in µ
Flat prior → posterior density for µ is Norm(x̄ , σ2/N)

Highest posterior density (HPD) credible region by integrating:
x̄ ± σ/

√
N with P = 68.3%
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Bayesian credible region
Normalize the likelihood for the observed sample; report the region that includes
68.3% of the normalized likelihood:
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“Root-N” confidence region calibration

Likelihoods or χ2 curves for 100 simulated data sets, µ = 0
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Parameter estimation take-aways

• F and B approaches do very different kinds of
summing/averaging

I F : Sum/average over sample space

I B: Sum/average over parameter space

• The observed data play very different roles

I F probabilities do not (must not!) use the observed data

I B probabilities only use the observed data

• They both produce the same reported estimates in the normal
mean setting, but this is a coincidence that won’t hold in
general
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Plan

1 Frequentist and Bayesian parameter estimation

2 Frequentist and Bayesian model assessment

3 Demographics and detection
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Null hypothesis significance testing (NHST)
Neyman-Pearson testing
• Specify simple null hypothesis H0 such that rejecting it implies an

interesting effect is present

• Devise statistic S(D) measuring departure from null predictions

• Divide sample space into probable and improbable parts (for H0);
p(improbable|H0) = α (Type I error rate), with α specified a priori

• If S(Dobs) lies in improbable region, reject H0; otherwise accept it

• Report: “H0 was rejected (or not) with a procedure with false-alarm
frequency α”

Scrit,↵

p
(S

|H
0
)

S(Dobs)

H0

�

S(Dhyp)
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Neyman and Pearson devised this approach guided by
Neyman’s frequentist principle:

In repeated practical use of a statistical procedure, the
long-run average actual error should not be greater than
(and ideally should equal) the long-run average reported
error. (Berger 2003)

A confidence region is an example of a familiar procedure
satisfying the frequentist principle

They insisted that one also specify an alternative, and find the
error rate for falsely rejecting it (Type II error)

For simple null and alternative hypotheses, the optimal S(D)
is the (log) likelihood ratio. For composite hypotheses, the
maximum likelihood ratio is popular.
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Fisher’s p-value testing

Fisher (and others) felt reporting a rejection frequency of α
no matter where S(Dobs) lies in the rejection region does not
accurately communicate the strength of evidence against H0

He advocated reporting the p-value:

p = P(S(D) > S(Dobs)|H0)

Smaller p-values indicate stronger evidence against H0

Astronomers call this the significance level or the false-alarm
probability (FAP). Statisticians don’t—for good reason!

p
(S

|H
0
)

H0

S(Dobs)

p

S(Dhyp)
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ASA 2016 statement
on statistical significance and p-values

• P-values do not measure the probability that the studied
hypothesis is true, or the probability that the data were
produced by random chance alone.

• Scientific conclusions and business or policy decisions
should not be based only on whether a p-value passes a
specific threshold.

• By itself, a p-value does not provide a good measure of
evidence regarding a model or hypothesis.

• . . .
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p-values and the FAP fallacy

From the exoplanets literature:

“...the false alarm probability for this signal is rather high at a
few percent.”

“This signal has a false alarm probability of < 4 % and is
consistent with a planet of minimum mass 2.2 M�...”

“This detection has a signal-to-noise ratio of 4.1 with an
empirically estimated upper limit on false alarm probability of
1.0%.”

“We find a false-alarm probability < 10−4 that the RV
oscillations attributed to CoRoT-7b and CoRoT-7c are
spurious effects of noise and activity.”
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All of these statements incorrectly describe the
weight of evidence for a planet, and almost certainly

greatly exaggerate the weight of the evidence
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What’s wrong?

“This signal, with S(Dobs) = X, has a FAP of p . . .”

p = P({Dhyp : S(Dhyp) ≥ S(Dobs)}|H0)

Probability . . . given H0

p is computed assuming that H0 always operates

Every alarm is false (i.e., with FAP= 1) in this “world”

Probability. . . including worse departures from null predictions

p refers, not specifically to Dobs, but to a set including more
extreme data

Dobs bounds this set on the weakest side
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What a p-value really means

In the voice of Don LaFontaine or Lake Bell:

In a world. . . with absolutely no exoplanets,
with a threshold set so we wrongly claim to

detect planets 100× p% of the time,
this data would wrongly be considered a

detection—and it would be the data
providing the weakest evidence for a planet

in that world.

Who wants to say that?! Whence “p-value.”
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p’s one intuitive property

Under the null, the fraction of time p > X is. . .X .

Think of p as an alternative test statistic—a nonlinear mapping of
S(D) that has a uniform distribution under the null

p
(S

|H
0
)

H0

S(Dobs)

p

S(Dhyp) p-value1 0
p
(p

-v
al

u
e|H

0
)

p is a surprise-ordered relabeling of the data, with a U(0, 1) PDF,
and a linearly rising CDF
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Surprise isn’t enough

The rarity of data “like” Dobs under H0 is evidence against H0 only
if plausible alternatives make Dobs less surprising

Expand the “world” of the p-value calculation:

• Let an alternative, H1, sometimes operate, with probability π1

(with null prevalence π0 = 1− π1)

• Compare the rates for getting the observed p-value under H0

and H1 (not “observed or smaller p-value”)

• Equivalently: Compare the rates for getting S(Dobs) under H0

and H1
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A Monte Carlo experiment (Berger 2003)

Consider measurements of µ with Gaussian noise, σ known:

• Choose µ = 0 OR µ ∼ N(0, 4σ2) with a fair coin flip∗

• Simulate n data, xi ∼ N(µ, σ2) (use n = 20, 200, 2000)

• Calculate zobs = |x̄ |
σ/
√
n

and p(zobs) = P(z > zobs|µ = 0)

• Bin p(z) separately for each hypothesis; repeat

Compare how often the two hypotheses produce data with a
1–, 2–, or 3–σ effect → conditional error probabilities (real
FAPs!)

z p-value

1 0.317
2 0.046
3 0.003

∗An assumption that gives alternatives a “fair” chance and would overestimate the
evidence against H0 in settings where the null is more prevalent
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Significance Level Frequencies, n = 20

bin size Null hypothesis Alternative

40 / 60



Significance Level Frequencies, n = 200
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Significance Level Frequencies, n = 2000
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Conditional error rates and posterior odds

Bayes’s theorem comparing two hypotheses → posterior odds:

O10 ≡ p(H1|D)

p(H0|D)

=
p(H1)

p(H0)
× p(D|H1)

p(D|H0)

Here D = {xi}, and the Bayes factor is:

B ≡ p({xi}|H1)

p({xi}|H0)
=

p(pobs|H1)

p(pobs|H0)

→ B here is just the ratio calculated in the Monte Carlo!
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For compound hypotheses (H1 here), the marginal likelihood
accounts for parameter uncertainty that is ignored by p-values
(which typically set parameters equal to best-fit values):

p(D|Hi ) =

∫
dθi p(θi ) p(D|θi ,Hi )

H0

H1

p
(D

|H
i)

Dobs

Dhyp

p(D|H1)

p(D|µ, H1)

Also, the marginal likelihood uses all of the data, not just the value
of a test statistic: in general p(D|Hi ) 6= p(S(D)|Hi )
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Marginal vs. maximum likelihood & Ockham’s razor

p, L

θ

∆θ

δθ
Prior

Likelihood

p(D|Mi ) =

∫
dθi p(θi |M) L(θi ) ≈ p(θ̂i |M)L(θ̂i )δθi

≈ L(θ̂i )
δθi
∆θi

= Maximum Likelihood× Ockham Factor

Models with more parameters often make the data more
probable — for the best fit

Ockham factor penalizes models for “wasted” volume of
parameter space

Quantifies intuition that models shouldn’t require fine-tuning
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Plan

1 Frequentist and Bayesian parameter estimation

2 Frequentist and Bayesian model assessment

3 Demographics and detection
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A circularity problem

• We need to know population properties—prevalences,
parameter distributions—to quantify detection uncertainty for
a particular member using conditional error rates/posterior
odds.

• We try to detect individual members in order to learn about
the population.

Spectral
Data

Radial Velocity 
Curves

Planet 
Detection & 

Measurement

Exoplanet Population 
Properties

Exoplanets

Design

Bayesian discovery chains have feedback loops
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Hierarchical Bayes (HB) for detection

In a population context, we can learn features of priors by pooling the
data—including learning prevalences/occurrence rates

Measure N = 100 targets
with additive Gaussian noise,
σ = 1

• 70 have A = 0 (M0)

• 30 have A = 2.2 (M1)

Let f = fraction of objects
with A = 2.2.

If f were known, it would be
the prior probability for a
Bayesian odds calculation.

Treat f as unknown (flat
prior); infer it from the data
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One can say there are about 30 sources present, without
being able to say for sure whether many of the
candidates are sources or not.
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What to report for individual discoveries?

This is an open issue!

Do report the p-value (perhaps a posterior predictive p-value) —
but just call it. . . a p-value! View it mainly as a model checking
tool, a rough measure of misfit of the null.

Supplement it with a result that speaks more directly to the
false/true alarm probability—a Bayes factor or conditional F error
rate

The FAP depends on the prior odds, Π01 = π0/π1 and priors for
any uncertain parameters (pop’n dist’ns), motivating suggestions:

• Establish default/consensus interim priors for analyzing data
from individual systems; report interim posteriors and
detection odds; eventually update using HB results

• Report p-value and the prior odds that would be needed to
produce a specified FAP (such as 5%, or 1%)
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Recap: Exoplanet discovery answers

• Single-host planet detection:

I F : Null hypothesis (“no planet”) significance testing via
maximum likelihood ratio:

• Fixed-threshold Type I (false alarm) & II (false
no-alarm) error probabilities

• p-values [Note: p-value 6= FAP!]

I B: Posterior probability (or odds) for a planet via
marginal likelihood

• Planet demographics:

I B: Hierarchical Bayesian modeling—learning priors from
populations

I F : Adaptive thresholding via p-value distribution (e.g.,
controlling false discovery rate — FDR; out-of-scope!)

• Feedback: Single-host inference ↔ demographic inference
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Entries to the p-value literature

• Bibliographies: “402 Citations. . . ” (Thompson 2001) [web
site]; “Papers Discussing Significance Testing” (2001–2011)
[web site]

• The significance test controversy: a reader (ed. Morrison &
Henkel 1970, 2006) [Google Books]

• “Could Fisher, Jeffreys and Neyman Have Agreed on
Testing?” (Berger 2003 with discussion; 2001 Fisher Lecture),
Statistical Science, 18, 1–32 [URL]

• “Odds Are, It’s Wrong: Science fails to face the shortcomings
of statistics” (By Tom Siegfried 2010) [Science News, March
2010]

• “Scientific method: Statistical errors” (By Regina Nuzzo
2014) [Nature news feature, Feb 2014]

• “The ASA’s statement on p-values: context, process, and
purpose” [The American Statistician, March 2016]
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Jetsam!
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Generalizing Berger’s Monte Carlo expt

What about another µ prior?• For data sets with H0 rejected at p ≈ 0.05, H0 will be true at
least 23% of the time (and typically close to 50%). (Edwards
et al. 1963; Berger and Selke 1987)
• At p ≈ 0.01, H0 will be true at least 7% of the time (and

typically close to 15%).

What about a different “true” null frequency?• If the null is initially true 90% of the time (as has been
estimated in some disciplines), for data producing p ≈ 0.05,
the null is true at least 72% of the time, and typically over
90%.

In addition . . .• At a fixed p, the proportion of the time H0 is falsely rejected
grows as

√
n. (Jeffreys 1939; Lindley 1957)

• Similar results hold generically; e.g., for χ2. (Delampady &
Berger 1990)
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Feedback Example:
Adaptive Threshold vs. Hier. Bayes

Setting: Counting sources (real vs. spurious)

Measure N = 100 objects with additive Gaussian noise, σ = 1:

• 30 have A = 2.2

• 70 have A = 0

Detect via 100 tests of H0 : A = 0

Detection Result:
Source Present Negative Positive Total

H0: No T− F+ ν0

H1: Yes F− T+ ν1

Total N− N+ N
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Thresholding controlling FWER and FDR
Threshold criteria:

• Fixed: Control family-wise error rate at level α: accept objects
with p-valuesp = α/N, aiming to not make a single false
discovery → 9 (accurate) discoveries for FWER = 20%

• Adaptive Control false discovery rate, 〈F+/N+〉 = 20% via
Benjamini-Hochberg → 25 discoveries (4 false)

• Other choices possible
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Rejected 25 nulls in 100 tests
30 true non-nulls present
4 false discoveries

100% null prediction

20% FDR cutoff

FDR null accepted

FDR null rejected

FW null rejected

Issue with FDR control:
Astronomers will use detections to
infer distributions; will be biased
for dim sources
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Hierarchical Bayes approach

Let f = fraction of objects with A = 2.2.

If f were known, it would be the prior probability for a Bayesian
odds calculation.

Treat f as unknown (flat prior); infer it from the data:
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One can say there are about 30
sources present, without being
able to say for sure whether many
of the candidates are sources or
not.
Caution: The “upper level” prior
needs some care in more complex
settings (Scott & Berger 2008;
MLM literature)

56 / 60



Confidence regions

“Confidence region”

• Frequentist quantification of uncertainty in a parameter
estimate

• A procedure that takes data as input, and gives a region as
output

• The specific region found by applying a CR procedure to an
observed dataset

“Confidence level”

• Lower bound on coverage C (θ): how often CR(Dhyp) contains
the parameter value θ used to generate Dhyp

(conservative guarantee of coverage)
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“Calibration” of credible regions

How often may we expect an HPD region with probability P to
include the true value if we analyze many datasets? I.e., what’s the
frequentist coverage of an interval rule ∆(D) defined by
calculating the Bayesian HPD region each time?

Suppose we generate datasets by picking a parameter value from
p(θ) and simulating data from p(D|θ)

The fraction of time θ will be in the HPD region is:

Q =

∫
dθ p(θ)

∫
dD p(D|θ) Jθ ∈ ∆(D)K

Note p(θ)p(D|θ) = p(θ,D) = p(D)p(θ|D), so

Q =

∫
dD

∫
dθ p(θ|D) p(D) Jθ ∈ ∆(D)K
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Q =

∫
dD

∫
dθ p(θ|D) p(D) Jθ ∈ ∆(D)K

=

∫
dD p(D)

∫
dθ p(θ|D) Jθ ∈ ∆(D)K

=

∫
dD p(D)

∫
∆(D)

dθ p(θ|D)

=

∫
dD p(D)P

= P

The HPD region includes the true parameters 100P% of the time

This is exactly true for any problem, even for small datasets

Keep in mind it involves drawing θ from the prior; credible regions
are “calibrated with respect to the prior”
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Credible regions guarantee average coverage

Recall the original Q integral:

Q =

∫
dθ p(θ)

∫
dD p(D|θ) Jθ ∈ ∆(D)K

=

∫
dθ p(θ)C (θ)

where C (θ) is the (frequentist) coverage of the HPD region when
the data are generated using θ

This indicates Bayesian regions have guaranteed average coverage

The prior can be interpreted as quantifying how much we care
about coverage in different parts of the parameter space
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