
 
 
 
 
 

Wednesday Hands-On Instructions 
In this session, you will fit your planet light curves starting with the analytic parameters from 
Tuesday.  

Quick Introduction to pyLIMA and the Sagan notebook 
 
pyLIMA is the first microlensing modeling open source software. It is written in python. You can 
find a more complete documentation and download it here : 
 
https://github.com/ebachelet/pyLIMA 
 
This python notebook is based on pyLIMA and uses that package to explore and fit a (planetary) 
microlensing light curve. Using this notebook, you will: 
 

1. Compare the microlensing model generated from your analytic estimation with the data. 
2. Manually adjust with the parameters to see how they affect the model. 
3. Fit a single lens model to the data (excluding the planetary perturbation). 
4. Fit a planetary model to the full data set. 

Opening the Notebook 
 

1. Open a VNC connection to the Amazon cloud using the IP address given and your 
username and password. 

2. Open an xterm by clicking  
Applications -> System Tools -> XTerm 

3. use xrandr to set the VNC display to match the device screen size. It is important to 
maximize the screen size in order to maximize the space for displaying plots. 

○ The command “xrandr” will list the available screen options. 
○ As an example, if you screen is 1920x1080 pixels, use the command  

xrandr -s 1920x1080  
to maximize the size of the VNC display. 

4. Guide to directories: 
○ Your default directory is your home directory /nwhome/userxxx/ 
○ The /nwhome/userxxx/examples/ 
○ The data are located in /ssw/data/ 

5. Go to the examples directory, i.e.  
cd examples 

6. Setup python using the command  
source activate astroconda  

https://github.com/ebachelet/pyLIMA


 
 
 
 
 

(if you miss this step, the notebook will load, but not run. Trust me, I tried it several 
times.) 

7. Open the notebook using  
jupyter notebook SAGAN_binary_3.ipynb 

This opens a browser window with the notebook. 

General notes on using the notebook:  
● The better the initial guess, the better the final fit will be. 
● Run each cell sequentially. 
● To run a cell, ​click​ on it and then use the command 

Shift+Enter 
● Places you may need or want to modify the code for your particular light curve are 

marked with 
###****CHANGE****### 
###****ENDOFCHANGE****### 

● Read the comments. You may find them helpful. 
● If for some reason, you have messed up your examples/ directory and want to start over 

with the original version, copy /ssw/pyLIMA-master/examples/ to your home directory, 
i.e.  

cp -r /ssw/pyLIMA-master/examples . 
 
There are a total of 7 cells in the notebook. Below are instructions for each one. 

Cell 1: Import the required libraries/modules 
Just run this. There is nothing to modify. 

Cell 2: Import and view the light curve file 
Referring to the handout, adjust the file path for the file corresponding to your event. 
Specifically, change the line: 
 
/ssw/data/WFIRST_SAGAN_X/WFIRST_binary_SAGAN.dat 
 
where “X” → your group number and “WFIRST_binary_SAGAN.dat” → your filename. The 
document gl_planets_X.txt matches your event name to the proper filename. Note that the 
event name also encodes your group number, e.g.  
 
Suppose your event is ​Event_2_05​. Then, you are in group ​2​, so you would open the file 
gl_planets_2.txt​, and look for the line:  

2_05 WFIRST_0915.dat GLPlanet 



 
 
 
 
 

 
WFIRST_0915.dat​ is your data file. So you should modify the path to be 

 ​/ssw/data/WFIRST_SAGAN_2/WFIRST_0915.dat 

Adjusting the plot 
When you run this cell, it will produce a plot of the light curve data. You can adjust the plot using 
the features indicated on the image below: 
 

 

Cell 3: Setting t_anomaly and delta_t 
 
t_anomaly​ = the approximate midpoint of the anomaly. You can use the value of t_planet from 
Tuesday. 
delta_t ​= the approximate duration of the anomaly. 
 
These variables are used when fitting a point lens light curve to mask out the data during the 
planetary anomaly. They are also used later when resampling the data prior to doing the full 
2-body lens fit. After setting these values, run the cell as is. You can reassess them after 
running Cell 5. 



 
 
 
 
 

Cell 4: Initial guess for the microlensing parameters 
In this box, you define the parameters of the initial model light curve and create a pyLIMA 
“event.Event()” object. Then, the rest of the cell sets up the model light curve using your initial 
parameters and plots both the light curve and the caustics with the source trajectory. 
 
Defining the parameters is probably the most important step in the entire notebook.​ If the 
initial guess is really bad (e.g., the source trajectory doesn’t pass through the caustics), the fit 
will fail. The purpose of this box is to assess the initial parameters by examining the light curve 
(​black​ points) and microlensing model (​blue​ curve) in detail. Adjust the parameters manually to 
improve your initial guess. Specifically, 
 

1. Set the values of ​to, uo, tE, rho, s, q, ​and​ alpha​ using your analytic estimates from the 
Tuesday sesion. 

2. Run the cell using ​Shift+Enter​. 
3. Look at the output light curve. Does the model look “good”? Follow the questions below 

to answer this question. 
4. Adjust the parameters one at a time to get a better input model. Adjust only one 

parameter at a time. Then re-run the cell and re-examine the light curve. You may want 
to take notes about what values you tried for each parameter. 

5. (Optional) you can change the name of your event, i.e. 
your_event.name = ‘WFIRST binary’ 

You can call it anything you want, e.g. “Henrietta Levitt’s favorite microlensing event” 
 
Below are some common problems and how to solve them. They are given in the order in which 
they should be addressed. Your fit does not need to be perfect, but the closer it is, the better the 
final result. Spend no more than 10 minutes adjusting parameters. The reason we do numerical 
fits using computers is that it is hard to adjust the parameters by hand. 

Are the point-lens parameters (​to, uo, tE​) okay? 
The analytic estimates of these should be pretty good. For completeness, the pictures below 
show some possible adjustments. As seen from the pictures below, adjustments to ​uo​ may be 
degenerate with adjustments to ​tE​. 
 



 
 
 
 
 

A good fit: 

 

t0 is too small: 

 

u0 is too small: 

 



 
 
 
 
 

u0 is too large: 

 

tE is too small: 

 

tE is too large: 

 

 

  



 
 
 
 
 

Is there a planetary perturbation? 
1. Top panel: Zoom in on the planetary perturbation. Does the model have some kind of 

perturbation there? 
2. Bottom panel: Does the source trajectory (​blue​) go through the caustics (​red​)? 

 
If the answers are no, the problem is either with ​alpha​ or ​s​. ​Focus on the caustics and source 
trajectory: the source trajectory should go through the caustics. 
 
First, check ​alpha​ which affects the ​angle of the source trajectory​: 

● alpha​ should be in RADIANS. 
● Try inverting the sign of ​alpha 
● Try adding 𝛑 or subtracting 𝛑 from ​alpha 

 
Alternatively, the problem may be with ​s​. ​s​ affects the ​position of the caustics​. 
 
The diagrams starting on the next page show possible adjustments to ​alpha​ and ​s​. For ​s​, the 
diagrams showa minor image perturbation. For a major image perturbation, ​s​ may need to be 
changed in the opposite direction (because the caustics are on the opposite side of the lens 
star). In either case, try both increasing and decreasing ​s​ if necessary.  
 
The exact timing of the caustic crossing in the model depends on both of these parameters 
simultaneously (and also ​tE​ and ​uo​). Once you have a planetary perturbation, changing the 
timing of this perturbation requires changing both ​s​ and ​alpha​ in concert. It is not necessary to 
optimize this, just to make sure there is a perturbation of the right form within a few days of the 
perturbation in the data. 
 

 

  



 
 
 
 
 

Good alpha (source trajectory goes through the caustics): 

 

Bad alpha (source trajectory on the opposite side of caustics): 

 
 



 
 
 
 
 

s too small (source trajectory passes inside the caustics): 

 

s too large (source trajectory passes outside the caustics): 

 



 
 
 
 
 

Is the planetary perturbation the right size? 
The size/duration of the planetary perturbation is affected by the size of the ​caustics​, which in 
turn depends on the value of ​q​. 

q too small: 

 

q too large: 

 
 



 
 
 
 
 

Is the amplitude of the planetary perturbation close to correct? Does the 
planetary perturbation have the right number of features? 
The finite source effect, controlled by ​rho​ (the source size), affects how rounded the caustic 
crossings are and also the maximum magnification of the caustic crossing. 

rho too small (model is peakier than the data): 

 

rho too large (caustic crossings have merged because rho is bigger than the caustic 
size): 

 
 

 

  



 
 
 
 
 

Cell 5: PSPL Fit 
This cell fits a PSPL model to the light curve data. First, it excludes the planetary perturbation 
from the fitting using your values of ​t_anomaly​ and ​delta_t​ from Cell 3, i.e. it sets 
 

good = np.where((WFIRST_data[:,0]<t_anomaly-delta_t) |  
     (WFIRST_data[:,0]>t_anomaly+delta_t))[0] 
The key here is to assess whether or not the planetary perturbation has been sufficiently 
excluded. If the perturbation is large and not properly excluded from the fitting, it could skew the 
PSPL fitting. If too much of the light curve is excluded, the PSPL fit may fail due to insufficient 
information. These problems are more likely to arise if the planetary perturbations are large. 
 
To address these problems,  

1. Do NOT change anything in this cell.  
2. Instead, change​ t_anomaly​ and ​delta_t​ in ​Cell 3  
3. Re-run both Cells 3 and 4  
4. Re-run this cell and re-evaluated 

 
Also, keep in mind that the amount of the light curve that is excluded is ​t_anomaly​ + [​-delta_t​, 
delta_t​] (so the width is TWICE the value of ​delta_t​). Below are two examples that require 
changes to ​delta_t​. 

delta_t too small (perturbation still obvious): 

 



 
 
 
 
 

delta_t too large (peak is lost unnecessarily; this will affect the accuracy of the fitted uo 
and tE): 

 
 

Cell 6: Setting to, uo, tE based on PSPL fit 
After checking the output from Cell 5, if the PSPL fit is good, just run this box with no changes. 

Cell 7: Binary model fitting 
Using ​to, uo, tE ​from the PSPL fit and ​rho, s, q, ​and ​alpha​ from Cell 4, this cell will fit a binary 
lens model (i.e. a 2-body lens model with a star and planet) to the full data set. Here is a brief 
description of what it does: 

1. It extracts a subset of the data to speed up the computations. Outside of the anomaly, it 
uses every 32nd point. During the anomaly, it uses every Nth point where N = 
anomaly_step_size​, which in turn depends on ​delta_t​. 

2. It sets the parameter boundaries based on the microlensing parameters described above 
and some default ranges. These are the lines 
“​binary_model.parameters_boundaries[0]​”, etc. These boundaries have been 
deliberately set with restrictive ranges to ensure the code runs in a reasonable amount of 
time. 



 
 
 
 
 

3. It will fit a binary model to the data using a ​differential evolution​ routine (specifically 
scipy.optimize.differential_evolution​). While this is running, the code will produce a series 
of lines 

 
4. It will produce the fitted values (highlighted in ​red​ below), the light curve of the data, and 

fitted model. 

 
The recommended approach is to just ​try running this box as written, with no changes​. 

When you get a ValueError... 
The notebook will likely “throw an exception” (raise a ValueError). The most common type of 
error has the following form: 
 

ValueError: [Upper/Lower] boundary for [parameter] too [small/large]! Make it 
[larger/smaller]. 
Your boundaries: [X, X] 
Please change binary_model.parameters_boundaries[N]. 

 
This happens because the boundaries (which will be used by the differential evolution routine) 
are hard boundaries. Therefore, this exception is thrown if the boundaries set in 
binary_model.parameters_boundaries do not include the true values. The exception states 
which parameter needs to be changed and in which direction. 
 
The lines to modify are ​one​ of: 
 

### to boundaries 
binary_model.parameters_boundaries[0] = [to-0.5,to+0.5] 
### uo boundaries 
binary_model.parameters_boundaries[1] = [uo*0.99 , uo*1.01] 
### tE boundaries 
binary_model.parameters_boundaries[2] = [tE-0.5,tE+0.5] 
### rho boundaries 
binary_model.parameters_boundaries[3] = [10**-4,10**-2] 

https://docs.scipy.org/doc/scipy-0.17.0/reference/generated/scipy.optimize.differential_evolution.html
https://en.wikipedia.org/wiki/Differential_evolution


 
 
 
 
 

### log_10(s) boundaries 
binary_model.parameters_boundaries[4] = [np.log10(s)-0.05,np.log10(s)+0.05] 
### log_10(q) boundaries, no need to change this 
#binary_model.parameters_boundaries[5] = [-5.60,-3.60] 
### alpha boundaries 
binary_model.parameters_boundaries[6] = [alpha-1.0,alpha+1.0] 

 

Advice on changing binary_model.parameters_boundaries: 
● If the problem is ​to, uo​, or ​tE​, review the output from Cell 5.  

a. Does your PSPL fit look okay? Most likely there are no glaring problems (e.g. the 
model does not go through the data). 

b. Is the peak of the lightcurve excluded from the PSPL fit (more likely to be a 
problem if your planetary perturbation is large and near the peak of the 
lightcurve)? The peak of the light curve contains most of the information about ​uo 
and ​tE​. If it is excluded from the PSPL fit, this can lead to inaccurate values for 
uo​ and ​tE​. If the peak is excluded, adjust ​t_anomaly​ and ​delta_t​ in Cell 3 to shift 
the range of the excluded data. (see examples and notes under Cell 5). 

c. If the PSPL fit seems okay, try adjusting binary_model.parameters_boundaries 
as described below. 

● For everything except ​uo​, start by changing the additive value by a factor of 2, e.g. (​to​ - 
0.5) → (​to​ - 1.0) 

● For ​u0​, try changing 0.99 → 0.95 or 1.01 → 1.05 
● Avoid making the width of the boundaries too large. If you need to change one of the 

boundaries by ​more than twice​ the amount above, also change the other boundary by 
the corresponding amount. The larger the width of the boundaries, the longer it will take 
the code to run. The initial widths of the boundaries were chosen so that the code will 
run in a reasonable amount of time. (e.g. increasing the width of the ​log_s​ boundary to 
+/- 0.5 could result in a run time of several hours or a fit that fails to converge). 

● u0​,​ tE​, and ​rho​ are all positive quantities. Do not allow their lower boundaries to go 
below zero. (trying to fit negative ​rho​ is known to cause the fit to fail.) 

 

ValueErrors that Do Not Fit the Template Above: 
There are several special value errors for the boundaries of ​log_s​: 
 
1. ValueError: log_s boundary too wide. Should not include log_s=0. 
 
Recall from Scott Gaudi’s talk on Monday that the caustic structure has a significantly different 
form for log_s < 0, log_s ~ 0, and log_s > 0 (i.e. s < 1, s ~ 1, s > 1), which give the “close”, 



 
 
 
 
 

“resonant,” and “wide” caustic structures. The resonant caustic structures (log_s ~ 0) are 
extremely large and give extreme distortions to the light curve as a result. By design and by 
definition of being a “Gould & Loeb” -type planet, ​your light curve does not have a resonant 
caustic​. If you include resonant caustic structures in your fit boundaries, the code will have a 
very hard time converging because those trials will be quite poor and are nowhere near the true 
minimum. 
 
To fix this error: 

1. Review Cell 4. Does your model generate a planetary perturbation in approximately the 
right part of the light curve? If not, go back to Cell 4, make adjustments, and re-run to 
this point. 

2. Look at boundaries for log_s.  
a. What is the lower value?  
b. What is the upper value? 
c. Is your perturbation close (log_s < 0) or wide (log_s>0)? 

If your perturbation is close, both the upper and lower boundaries should have log_s < 0. 
If your perturbation is wide, both the upper and lower boundaries should have log_s > 0. 
Make adjustments as necessary.  

 
2. ValueError: Are you sure this is a close planet (s < 1)? 
3. ValueError: Are you sure this is a wide planet (s > 1)? 
 
Both of these errors are related and indicate the same problem: on Tuesday, you incorrectly 
assessed whether the planet is a close or a wide planet (i.e. minor or major image perturbation).  

1. Your planet should be similar to the other planets in your group. Consult with your other 
group members to get their opinion. 

2. Go back to your Tuesday worksheet and rework the value of ​s ​and ​alpha​ assuming the 
planet perturbs the other image. Then, go back to Cell 4, fix the parameters and re-run 
up to this point. 

Additional Notes: 
● f(x) shown in the output is the chi2 of the fit. The final value of f(x) should be some 

number around ~700-900.  
● The fitting process should take approximately 10-25 minutes. 
● It is possible to speed up the fitting by fixing the values of ​t0​, ​u0​, and ​tE​. Do this by 

setting their boundaries to [​t0​+0., ​t0​-0.], etc. This will result in a faster, but less accurate 
fit. (Recommended only if your first fit failed and you are running out of time in the 
Hands-On session AND the PSPL fit is good.) 

 



 
 
 
 
 

Known failure modes: 
● If the fit is running and the f(x) value stops changing (e.g. decreases by <1 over 1000 

steps), the fit is stuck. Interrupt it and restart. 

Wrapping Up 
For your presentations, you should save: 

1. After the fit has run, SAVE your notebook.  
2. The final fitted parameters and their uncertainties (especially the values for ​log_s​ and 

log_q​). Either write this on a piece of paper or save it to a text file somewhere. 
3. A plot of the light curve. In the bottom of the plot, there should be a “save” (floppy disk) 

icon. Or you could do a screenshot. 
4. A zoom in of the planetary perturbation. 

 
If you have extra time, start working on calculating the physical planet parameters for your 
group presentation. 
 
 
 
 
 
 
 


