Galactic Structure Measured from Microlensing

Noma Am

Scutum-Crux Arm

Microlensing in the Era of WFIRST

Orion Arm

Cygnus Arm Perseus Arm

Sagittarius Arm

Sun Marc Moniez, IN2P3-CNRS Pasadena 10 august 2017

Topics

- What microlensing can specifically tell us about the Milky Way structures ?
- The current status for each structure
- What is difficult?
- What could be the next steps?

The microlensing actors belong to several structures

- Density, lens IMF, lens+source kinematics

The microlensing observables

- Simple events (point-source, point-lens, constant V_T)
 - Event by event Einstein radius crossing time t_E
 - Statistical information from a series of events:
 - optical depth $\mathbf{\tau}$ and t_E distribution
 - -> Constraints on total (*visible* + *hidden*) mass
 - -> Constraints on lens IMF
 - -> Constraints on relative obs/lens/source kinematics
- Non-standard events
 - Parallax, Xallarap, extended source, multiple lens/ sources... -> extra-information on distance, mass, velocity
 - Not considered here for statistical studies

Statistical information from a set of events

- Optical depth τ :

probability for a star to be behind an Einstein disk

Disk surface $\alpha \, R_E^{-2} \, \alpha \, M_{lens}$

 $\Rightarrow \tau \, \alpha \, \Sigma \, M_{lens}$

Does not depend on the mass distribution

- Einstein ring crossing time $t_E = R_E/V_t$ distribution

Use first moments (mean, sigma) or KStype tests to compare with models

Note: u_0 and t_0 do not provide physical information, but should have a flat prior distribution -> use this to **check signal quality**

Basic formulae for optical depth

 τ to a *given distance* (LMC or SMC) = fraction of solid angle occupied by Einstein rings up to that distance

$$\tau(D_S) = \int_0^{D_S} \int_{M=0}^{\infty} \pi \theta_E^2 \times \frac{\rho(D_L) D_L^2}{M} \frac{\mathrm{d}n_L(D_L, M)}{\mathrm{d}M} \mathrm{d}M \mathrm{d}D_L$$
$$\tau(D_S) = \frac{4\pi G D_S^2}{c^2} \int_0^1 x(1-x)\rho(x) \mathrm{d}x \quad Where \ x = D_L/D_S$$

The source distances can be widely distributed!

• Also strong and very variable interstellar absorption. For example: red giant clump not well defined in magnitude-color diagrams of spiral arms

Basic formulae for optical depth

 τ to a *given distance* (LMC or SMC) = fraction of solid angle occupied by Einstein rings up to that distance

$$\begin{aligned} \tau(D_S) &= \int_0^{D_S} \int_{M=0}^\infty \pi \theta_E^2 \times \frac{\rho(D_L) D_L^2}{M} \frac{\mathrm{d}n_L(D_L, M)}{\mathrm{d}M} \mathrm{d}M \mathrm{d}D_L \\ \tau(D_S) &= \frac{4\pi G D_S^2}{c^2} \int_0^1 x(1-x)\rho(x) \mathrm{d}x \quad \text{Where } x = D_L/D_S \end{aligned}$$

 $\tau \text{ to a given source population} < \tau >= \frac{\int_0^\infty \frac{\mathrm{d}n_S(D_S)}{\mathrm{d}D_S} \tau(D_S) D_S^2 \,\mathrm{d}D_S}{\int_0^\infty \frac{\mathrm{d}n_S(D_S)}{\mathrm{d}D_S} D_S^2 \,\mathrm{d}D_S}$

Basic formulae for optical depth

 τ to a *given distance* (LMC or SMC) = fraction of solid angle occupied by Einstein rings up to that distance

$$\begin{aligned} \tau(D_S) &= \int_0^{D_S} \int_{M=0}^\infty \pi \theta_E^2 \times \frac{\rho(D_L) D_L^2}{M} \frac{\mathrm{d}n_L(D_L, M)}{\mathrm{d}M} \mathrm{d}M \mathrm{d}D_L \\ \tau(D_S) &= \frac{4\pi G D_S^2}{c^2} \int_0^1 x(1-x)\rho(x) \mathrm{d}x \quad \text{Where } x = D_L/D_S \end{aligned}$$

 $\tau \text{ to a given source population } <\tau >= \frac{\int_0^\infty \frac{\mathrm{d}n_s(D_s)}{\mathrm{d}D_s} \tau(D_s) D_s^2 \,\mathrm{d}D_s}{\int_0^\infty \frac{\mathrm{d}n_s(D_s)}{\mathrm{d}D_s} D_s^2 \,\mathrm{d}D_s}$

 τ estimated from observations = fraction of time with source magnified >1.34 (corresponds to source inside Einstein ring)

$$\tau = \frac{1}{N_{obs} \Delta T_{obs}} \frac{\pi}{2} \sum_{events} \frac{t_{\rm E}}{\epsilon(t_{\rm E})}$$

Main targets

- Magellanic Clouds => probe hidden matter in halo $(\tau \sim 5.10^{-7})$
- Galactic center => probe ordinary stars as lenses in disk/bulge (τ ~ 2.10⁻⁶)
- Spiral arms

M31

=> probe ordinary stars in disk, bar + hidden matter in thick disc ($\tau \sim 5.10^{-7}$)

Census of the measured/measurable directions to probe milky-way structure

- Galactic center: all surveys -> bright past & future
- Galactic arms
 - 4 (low extinction) directions in (V, I): EROS
 - For visible passbands -> LSST is a probable future
 - Enormous potential in infra-red (free from extinction): VISTA
 - Future -> WFIRST
- Galactic halo
 - LMC/SMC: EROS/MACHO/OGLE/MOA

-> 27 years of monitoring !

- M31: AGAPE/MEGA. Difficulty of the pixel-lensing technique; combine Milky-way + M31 lenses
- Globular clusters (M22)

Main targets

• Magellanic Clouds => probe hidden matter in halo $(\tau \sim 5.10^{-7})$

The Milky way halo: LMC surveys

Search for very long events with joined analysis: MEMO project

MoaErosMachOgle combined light-curves should provide a much better efficiency at large t_E

Hypothesis to extrapolate efficiency

- Efficiency invariant with dilatation of time -> $\epsilon(\alpha t_E, \alpha \Delta t, \alpha t_{sample}) = \epsilon(t_E, \Delta t, t_{sample})$
- Real sampling is better than αt_{sample}

Expected combined exclusion limit, assuming joined analysis

Main targets

Galactic center => probe ordinary stars as lenses in disk/bulge ($\tau \sim 2.10^{-6}$)

Spiral arms
 => probe ordinary stars in
 disk, bar + hidden matter in
 thick disc (τ ~ 5.10⁻⁷)

What is critical for the Milky-Way plane study with microlensing?

Observational

- Extinction map -> impacts D_{os}
 distribution of catalogued sources
 - Fractal spatial structure...
 - Relation A_X vs A_K depends on kind and size of dust
 -> fluctuating with position
- WFIRST potential (less sensitive to extinction)

- Degeneracy (R_E/V_T): Lens Initial Mass Function / kinematics
- Analysis
 - Microlensing **detection efficiency**

Efficiency

- Averaged on a given source population (RG, all)
- Depends on sampling and environment

Detection Efficiency

- Averaged on u_0, t_0
- -> to obtain a Function of t_E only

Efficiency estimates

- Mathematically, microlensing detection efficiency is **zero** (infinite range of gravitation)
- It's a matter of definition -> define efficiency as the ratio of detected events to generated events
 - With uniform impact parameter $u_0 < 1$ (typically)
 - With uniform max. mag. time t_0 during the observed period
 - For a given source population (bright, red giants...)
 - Resolved sources or not (Differential Image Analysis)

Efficiency: hard points

• Blending

- Impacts Paczynski curve shape and reconstructed t_E
 - $\epsilon(t_{E \text{ rec.}})$ differs from $\epsilon(t_{E \text{ generated}})$
- Changes the effective # of stars
 - A minor (not catalogued) contributor to an object can emerge with microlensing, apparently increasing ε
 - Images from space telescopes provides true underlying luminosity function and includes spatial correlation between the blend components

EROS vs HST

Efficiency: hard points

• Blending

- Impacts Paczynski curve shape and reconstructed t_E
 - $\epsilon(t_{E rec.})$ differs from $\epsilon(t_{E generated})$
- Changes the effective # of stars
 - A minor (not catalogued) contributor to an object can emerge with microlensing, apparently increasing ε
 - Images from space telescopes provides true underlying luminosity function and includes spatial correlation between the blend components

• Contribution from non-standard events

- Generally not generated when estimating efficiency
- Can be statistically corrected

Efficiency: hard points

• Blending

- Impacts Paczynski curve shape and reconstructed t_E
 - $\epsilon(t_{E rec.})$ differs from $\epsilon(t_{E generated})$
- Changes the effective # of stars
 - A minor (not catalogued) contributor to an object can emerge with microlensing, apparently increasing ε
 - Images from space telescopes provides true underlying luminosity function and includes spatial correlation between the blend components

• Contribution from non-standard events

- Generally not generated when estimating efficiency
- Can be statistically corrected
- **High statistics needed** for reliable use of efficiency (for τ estimates)
 - ε is an *average* with large variations from event to event

$$\tau = \frac{1}{N_{obs} \Delta T_{obs}} \frac{\pi}{2} \sum_{events} \frac{t_{\rm E}}{\epsilon(t_{\rm E})}$$

Monitored fields towards the Galactic plane

Optical depth 2D maps

Optical depth 2D maps

Optical depth 2D maps

Results toward the Galactic center [Adapted from Sumi et al. (2013) & Awiphan et al. (2015)]

Results toward the Galactic center

[Adapted from Sumi et al. (2013) & Awiphan et al. (2015)]

Results toward the Galactic center

[Adapted from Sumi et al. (2013) & Awiphan et al. (2015)]

And now with the spiral arms 29 fields in 4 zones away from Galactic center : 13x10⁶ stars

And now with the spiral arms 29 fields in 4 zones away from Galactic center : 13x10⁶ stars

Stars (10⁶)	3.0	2.4	5.2	2.3
Field (°) ²	4.5	3.8	8.8	4.0
Image #	2×268	2×277	2×454	2×375

And now with the spiral arms 29 fields in 4 zones away from Galactic center : 13x10⁶ stars

Stars (10⁶)) 3.0	2.4	5.2	2.3
Field (°) ²	4.5	3.8	8.8	4.0
Image #	2×268	2×277	2×454	2×375

$\tau_{\text{measured}} = 0.30^{+.23}$.	0.72 ^{+.41} 28	0.49 ^{+.21} ₁₈	0.67 ^{+.63} 52
$\tau_{\text{simple mod.}} = 0.45$	0.43	0.38	0.23
$\tau_{\text{Besançon}} = 0.40$	0.44	0.34	0.22

No need for massive spiral structure or thick disk of hidden compact objects

And now with the spiral arms

Mapping of τ in longitude

Ingredients for a global interpretation with microlensing

- Include all the observations: CMDs, τ , t_E distribution
 - CMD described with mean stellar surface density, <color>
 - τ , and t_E distribution described with (τ , < t_E >)

• Knowledge of the selection effects

- Effective field
- Stellar detection efficiency
- Photometric uncertainties
- Microlensing efficiency -> CRITICAL
- Galactic density models (shape and mass of each structure), built to fit all known observations
- Stellar luminosity distribution -> source population 10-3
- Stellar mass distribution (IMF) -> lens population
- 3D extinction map -> CRITICAL .

extinction@15Kpc

Global fit: example of the 4 spiral arms targets

- Consider only stars with I < 18.4 to have the best control on detection efficiency
- Use simulation to connect 3 physical parameters ϕ_{bar} , $M_{thick \ disk}$, IMF with 16 observables: 4 x (ρ^* , $\langle V-I \rangle$, τ , $\langle t_E \rangle$)
- Minimize differences (simulation%observed) from linearised χ² with ∂(observable)/∂(parameter)

-> Necessary to **adjust mapped extinctions** by assuming 4 syst. & 1 stat. uncertainties (5 parameters)

Constraints on the bar from microlensing

From microlensing around γ Sct

- Significant contribution expected and observed to τ
- We can distinguish between $\phi = 13^{\circ}$ and 45°
 - But not distinguish 14° and 13°
- We can also distinguish between a long and a short bar (1 vs 1.5kpc), massive of light
 - But not go into the details of the bar shape such as double system, boxy shape... (Wegg et al., Zoccali et al.)

Information on the disk(s) from microlensing

About densities

- Distance distributions of sources/ lenses
- No need for an hidden contribution

About kinematics

- Orbital velocities dominate proper motions

About IMF

- Sensitivity to the lens IMF

0.2

0.15

0.1

0.05

Besançon model

4

2

β-Sct

0.2

0.15

0.1

0.05

8

6

4

2

0

4

2

0

20

kpc

16

kpc

γ-Sct

12

θ-Mus

16

12

Extended map in -100°< longitude < +100°

Extended map in -100°< longitude < +100°

Besançon model,

taking into account the extinction map of Marshall et al. 2006

WFIRST and the Galactic structure

- Should provide exquisite information on each microlensing event
- But only in a small field (2.8 sq. deg. in GC)
- Possibly more fields later (M31, M87)
- **Strong potential** when coupling with wide field surveys on Earth
 - Refine efficiency estimates
 - Calibrate blending corrections
 - Identify complex events...

Conclusions

Microlensing observations and the Milky Way structure

- Best tool to search for black holes [in plane or hidden in halo]
- From Galactic plane microlensing (CG + Spiral arms)
 - ✓ No need for hidden compact objets in the Milky Way plane: $M_{thick \ disk} < 5-7 \times 10^{10} \ M_{sol}$
 - ✓ **Bar** : Inclination confirmed
 - ✓ Lens IMF : Krupa disfavoured, modified Chabrier favoured
 - ✓ Galactic dynamics: sensitivity to orbital velocity (not to proper motions). -> can be refined with higher stat.

For long term perspectives:

- \checkmark Improve absorption map and extinction models
- ✓ Improve efficiency estimates
- Increase statistics + extend mapping, especially through dust with IR surveys
 - VVV at VISTA: K-survey within the galactic bulge and disk
 - OGLE IV, GAIA, WFIRST, LSST, Euclid

Supplements

Statistical representativity of the events

Microlensed stars are redder An effect of the non-

An effect of the nonuniformity of source distance

✓ τ increases with distance
 ✓ I increases with distance
 BUT faint stars do not enter
 the catalog => <I> is ~ stable
 ✓ Absorption increases with
 distance => (V-I) increases

Stability of <t>directions measurement

What impacts microlensing distributions?

Mass density spatial distribution model $\rho(r)$ (lenses) -> optical depth

- Galactic plane
 - Disk(s)
 - Bulge / bar
- Galactic halo

Mass distribution of lenses (IMF) $\rightarrow t_E$ distribution

Galaxy dynamics (lenses / sources) $\rightarrow t_E$ distribution

- Galactic disk: global rotation + ellipsoid of proper motions
- Bulge / bar have different dynamics

Spatial distribution of sources

Light transfert

- Galactic extinction

Detector response, analysis

- Efficiency: photometric quality, time sampling, selection algorithm

Deep understanding of the detector

Simulation: Lenses

- **Density models**: Besançon / simple home-made
 - Disk(s)
 - Bar ($\phi = 13^\circ$)
- **Kinematics** from the galactic models -> V_T
 - disk orbital velocity
 - Maxwellian V in bar
 - Peculiar velocities have negligible impact
- Mass Function -> R_E
 - Modified Chabrier $(m_0 \# 0.2)$

 $\xi(\log m/M_{\odot}) = 0.093 \times exp\left[\frac{-(\log m/m_0)^2}{2 \times (0.55)^2}\right], \text{ for } m \le M_{\odot}$

Besancon MF Standard Chabrier MF

 $Log_{10}[m(m_{\odot})]$

0.0

0.5

1.0

Modified Chabrier MF

-0.5

dn/dLog₁₀m

 10^{-3}

-1.5

-1.0

Simulation: Sources

- Density models: Besançon / simple home-made
 - Disk(s)
 - Bar ($\phi = 13^{\circ}$)

• Local CMD built from **debiased Hipparcos**

- Use only objects within their completion distance (such that V < 7.5)
- Assume same CMD within the disk
- 3D extinction map
 - Marshall et al. 2006 Fast spatial variations

Expérience de Recherche d'Objets Sombres

1m telescope in Chile Wide-field cameras **R** & **B** -> 32Mpix each • 7 years operation 50 Terabytes of data • 850,000 images processed ~77 10⁶ stars measured 300 to 500 times EROS1 (1990-1994) EROS2 (1996-2003)