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protoplanetary disks planets

Planet formation models

What is the origin of the diversity of planetary systems?



Importance of stellar evolution models

Kepler - bias corrected Fulton et al. 2017

The majority of planet properties are based on stellar evolution models



Stellar evolution

the full numerical approach the stellar evolution models
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Integrated models and HR diagram

initial condition + stellar evolution = HR diagram

-> age, other properties
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Outlines

1- Exoplanets and population synthesis

2- From disks to planets: integrated models

3- Population synthesis: comparison and results

4- Pebbles versus planetesimals



From GMC to present day planets
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⇒1000 AUTdisk < 107yr
99% gas   1% solids

Giant Molecular Cloud Protoplanetary disk
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Top down or bottom-up?

pre-solar grain

Protoplanetary disk

Core-accretion 
model

GI/DI model



Top-down models: the disk instability model 

Origin of enrichment in heavy elements/formation of low mass (Earth,Neptune) planets?

Clump formation depends critically on disk cooling

formation of massive planets
formation in outer parts of the disk

⇒
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Solar 
System

Extrasolar planets 

Protoplanetary 
disk

99% gas   1% solids

Bottom up model: the core accretion model

Tdisk < 107yr

gas giant 

Core formation
by solid
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Gas accretion
beyond critical

mass

The core-accretion model
ice giant

Core formation
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⇒

⇒

Planetesimals-based model Pebbles-based model

dust ~ microns

pebbles ~ cm

planetesimals ~ km

⇒

⇒

high efficiency low efficiency

What are these solids?



Planet formation: the players

⇒



Planet formation: the interactions

• solid-solid interactions

• gas disk structure and evolution

• solid accretion

• solid-gas disk interactions

• planet-disk interactions

• planet internal structure and gas capture

• planet-planet interactions 



Integrated models

What is the effect of the combined processes in 
shaping planetary systems?

⇒

protoplanetary disks planets



Integrated models
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Neptune mass planets should be found at 5 AU and 16 AU !!



Integrated models

Bi
ts

ch
 e

t a
l. 

 2
01

2

Outward migration

O
ut

w
ar

d
In

w
ar

d

Neptune mass planets should be found at 5 AU and 16 AU !!

The observed mass/period distribution of planets
is the result of combined processes

Migration / disk evolution / planetary growth  



Planet formation: full numerical or integrated models?
the full numerical approach

A. Fortier et al.: Planetary formation

Fig. 13. Example of the formation of a planetary system. Left panel shows the evolution of the semi-major axis of the protoplanets versus time.
Accreted planets are indicated with a big dot, ejected planets with a cross. The final masse of the surviving planets is written on the right of the
figure. Right panel depicts the eccentricity of planetesimals in the disc as a function of time (x-axis) and semi-major axis (y-axis). The colour bar
indicates the eccentricity values.

their final masses are determined by the coupled evolution of the
disc and the planet. Considering both migration and oligarchic
growth for the solid component of the planet has consequences
in the mass interval of a few tens Earth masses. These planets
find it to hard to survive, as their migration rate is larger than
their accretion rate (dominated by the accretion of solids), and
they are often lost in the central star. Planets that are between 10
and 100 Earth masses are usually undergoing inward type I mi-
gration. Only in the cases where the gas component of the disc
dissipates during this process allows to end up with planets in
this mass range. Indeed, if we calculate in situ models, planets in
this mass range are produced in the same fraction as giant plan-
ets in the mass bin M6 (103 to 104 M�). This is shown in Fig.14,
where we have used the same mass bins are in the previous fig-
ures, but now the colour bars of the histograms represent their
fixed location and not the change in semi major axis. Planets that
are in the mass range M4 are also planets that did not have the
possibility to start the runaway gas accretion phase. Planets ac-
creting gas in a runaway fashion grow exponentially with time,
so they leave the mass range of a few tens Earth masses very
fast and jump to several Jupiter masses. This has also an e↵ect
in planets with masses between a Saturn mass and a few Jupiter
masses: once the runaway of gas starts, planets can easily ac-
crete hundreds of Earth masses of gas, therefore it is more di�-
cult to form a planet in this mass range. This can be seen both in
the histograms of in situ formation and when migration is con-
sidered: the mass bin M5 (planets with masses between 100 and
1000 M�) is the one with less amount of planets. However, when
comparing the mass fraction of each mass bin in the in situ and
migration histograms one should keep in mind that the numbers
where calculated considering only the surviving planets. While
this is always the case for the in situ calculations, it is not for
the migration case. Most of the planets lost due to migration are
in the mass bin M4 (10 to 100 M�). Therefore, in the in situ his-
tograms, the fraction of planets in this mass bin represents all the
planets formed in this mass range. On the other hand, when mi-
gration is considered this fraction only accounts for the planets
that survived.

Giant planet formation by accretion of 100 km planetesimals
results quite unlikely, if not impossible. In our simulations, to ac-
tually form giant planets we had to reduce the planetesimal size,
at least down to 0.1 km. However, assuming a uniform popula-
tion of small planetesimals which size remains unchanged dur-
ing the whole formation of the planet is also hard to explain. It
is not yet clear how planetesimal formation proceeds. Models
that explain the formation of planetesimals by direct collapse
in vortices in turbulent regions (Johansen et al. 2007) predict
a fast formation of very big planetesimals (rm > 100 km). On
the other hand, coagulation models can not be ruled out. A re-
cent study of Windmark et al. (2012) shows that direct growth of
planetesimals via dust collisions can lead to the growth of 0.1 km
planetesimals. Indeed, initially small planetesimals show better
matches to the observed size distribution of objects in the as-
teroid belt and among the TNOs. Weidenschilling (2011) shows
that the size distribution currently observed in the asteroid belt
in the range of 10 to 100 km can be better explained by an ini-
tial population of 0.1 km planetesimals. Kenyon and Bromley
(2012) conclude, by combining observations of the hot and cold
populations of TNOs with time constraints on their formation
process, that TNOs form from a massive disc mainly composed
of 1 km planetesimals.

Most probably the initial population of planetesimals in pro-
toplanetary discs is not uniform in size, but follows a size distri-
bution. Being the origin of planetesimals still under debate, we
have some freedom to make assumptions on the initial size dis-
tribution of planetesimals. From what we have shown, without
small planetesimals giant planet formation is di�cult to explain,
at least in the way we understand it now. However, even with an
initial population of small planetesimals, the collisions among
themselves are likely to be disruptive as soon as their random ve-
locities start to be excited by a planetary embryo. In fact, the time
for fragmentation of 0.1 km planetesimals in the neighbourhood
of a forming planet is around 104 years, much less than the for-
mation timescale of the planet. Therefore, it is also unlikely that
an initial population of only small planetesimals can be used to
explain the formation of giant planets. Moreover, we have shown
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determination of the migration rate requires the computa-
tion of the 2D or 3D structure (including the thermodynam-
ics) of the proto-planetary disc. The computer time required
for carrying out such detailed multi-dimensional simula-
tions of these processes over a timescale covering planet
formation is prohibitively high. Hence, in the population
synthesis approach, planetary migration is computed using
fits to migration rates resulting from hydrodynamical cal-
culations (see Chapter by Baruteau et al. and references
therein).

Planetary migration occurs in different regimes depend-
ing upon the mass of the planet. For low mass planets,
i.e. planets not massive enough to open a gap in the proto-
planetary disc, migration occurs due to the imbalance be-
tween the Lindblad and corotation torques excerted on the
planet by the inner and outer regions of the disc. This
regime is called ”type I migration” and the correspond-
ing migration rate has been derived by linear and numer-
ical calculations (e.g. Ward, 1997; Tanaka et al., 2002;
Paardekooper and Papaloizou, 2009; Paardekooper et al.,
2011). For higher mass planets, i.e. planets massive
enough to open a gap in the proto-planetary disc, the planet
is confined in the gap by Lindblad torques and thus follows
the global disc accretion. This regime is called ”type II
migration.” Type II migration is itself sub-divided in two
modes: disc-dominated type II migration, in the case the
local disc mass exceeds the planetary mass, and planet-
dominated type II migration in the opposite case (see also
Lin and Papaloizou, 1986; Ida and Lin, 2004a; Mordasini
et al., 2009a). In the former case, the migration rate is
simply given by the local viscous evolution of the proto-
planetary disc, while the migration is decelerated by the in-
ertia of the planet in the latter case.

Initial population synthesis models by both IL and AMB
made use of the conventional formula of type I migration
derived for locally isothermal discs (Tanaka et al., 2002).
In order to investigate how sensitive the results are on the
magnitude of this migration, a scaling factor C1 was intro-
duced:

τmig1 =
a

ȧ

=
1

C1

1

3.81
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aΩK

)2 M∗
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M∗
a2Σg
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The expression of Tanaka et al. (2002) corresponds to C1 =
1, while C1 < 1 implies slower migration rates. IL as-
sume type I migration ceases inside the inner boundary of
the disc.

Since the publication of Tanaka et al. (2002), radiative
effects on the type I migration rate have been investigated
(e.g. Paardekooper and Mellema, 2006; Masset and Casoli,
2010; Paardekooper et al., 2011). It was shown that the mi-

gration velocity as well as its direction depend sensitively
upon the detailed dynamical and thermal structure of discs,
leading to a number of sub-regimes of type I migration (lo-
cally isothermal, adiabatic, (un-)saturated). Recently, a new
semi-analytic description of type I migration, which repro-
duces the results of Paardekooper et al. (2011), has been
derived (Mordasini et al., 2011a; Kretke and Lin, 2012).
It includes the effect of co-rotation torques that can lead
to outward migration in non-isothermal discs. This new
formalism has been implemented in recent simulations by
AMB who have shown that the scaling factor determining
the migration speed introduced in earlier models (Eq. 47)
becomes much less important (Alibert et al., 2013).

The transition mass between type I and type II migration
is Mg,vis (Eq. 52) in IL’s prescription and Mg,th (Eq. 53)
(more exactly, the condition derived by Crida et al. 2006) in
AMB’s prescription. The comparison between gap opening
criteria is treated in more details in section 2.7.

Initially, population synthesis models have assumed an
isothermal migration rate reduced by C1 ∼ 10−2− 10−1 in
IL’s simulations and C1 ∼ 10−3 − 10−2 in AMB’s sim-
ulations. The values of C1 less than unity were needed
to prevent cores of growing giant planets to fall into the
host star. These findings by population syntheses were an
important motivation to develop physically more realistic
non-isothermal migration models. This is one out of sev-
eral examples in which population synthesis can be used to
test in a statistical sense detailed modelling of individual
processes. Population synthesis models did not provide a
better understanding of the migration itself but pointed out
that the current prescription did not result in planet popula-
tions with the observed characteristics. It is worth pointing
out that with this new formalism for type I migration, which
has been implemented in recent simulations by AMB, an
arbitrary scaling factor (Eq. 47) slowing down migration
is no longer an absolute necessity (Alibert et al., 2013).
While this represents a definitive progress, difficulties re-
main. They are linked to the sensitivity of the migration
rate to the saturation of the corotation torque, to a partial
gap formed by relatively large migrating planet, and to or-
bital eccentricity. A further difficulty is due to the fact that
the onset of efficient gas accretion onto the core, and the sat-
uration of the corotation torque occur at a similar mass (of
order 10 M⊕), so that a self-consistent coupled approach of
the two processes is necessary.

For type II migration, as long as the mass of the planet
remains smaller than the local disc mass (of the order
of πΣr2), the migration timescale (τmig2(a) = a/|vr|)
is given by the local viscous diffusion time, tvis(a) ∼
(2/3)(a2/ν). For a steady accretion disc with F ∼ 3πΣν
and Σ ∝ 1/a, Mdisc(a) =

∫ a
2πaΣda = 2πΣa2. Then,

τmig2(a) ∼ tvis(a) ∼ Mdisc(a)/F (Hasegawa and Ida,
2013). For a planet more massive than the inner disc
mass Mdisc(a), the viscous torque from the outer disc
pushes the planet (mass Mplanet) rather than the inner disc.
Then, replacing Mdisc with Mplanet, τmig(a) ∼ Mplanet/F
(Hasegawa and Ida, 2013). In summary, the type II migra-
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A. Fortier et al.: Planetary formation

Fig. 13. Example of the formation of a planetary system. Left panel shows the evolution of the semi-major axis of the protoplanets versus time.
Accreted planets are indicated with a big dot, ejected planets with a cross. The final masse of the surviving planets is written on the right of the
figure. Right panel depicts the eccentricity of planetesimals in the disc as a function of time (x-axis) and semi-major axis (y-axis). The colour bar
indicates the eccentricity values.

their final masses are determined by the coupled evolution of the
disc and the planet. Considering both migration and oligarchic
growth for the solid component of the planet has consequences
in the mass interval of a few tens Earth masses. These planets
find it to hard to survive, as their migration rate is larger than
their accretion rate (dominated by the accretion of solids), and
they are often lost in the central star. Planets that are between 10
and 100 Earth masses are usually undergoing inward type I mi-
gration. Only in the cases where the gas component of the disc
dissipates during this process allows to end up with planets in
this mass range. Indeed, if we calculate in situ models, planets in
this mass range are produced in the same fraction as giant plan-
ets in the mass bin M6 (103 to 104 M�). This is shown in Fig.14,
where we have used the same mass bins are in the previous fig-
ures, but now the colour bars of the histograms represent their
fixed location and not the change in semi major axis. Planets that
are in the mass range M4 are also planets that did not have the
possibility to start the runaway gas accretion phase. Planets ac-
creting gas in a runaway fashion grow exponentially with time,
so they leave the mass range of a few tens Earth masses very
fast and jump to several Jupiter masses. This has also an e↵ect
in planets with masses between a Saturn mass and a few Jupiter
masses: once the runaway of gas starts, planets can easily ac-
crete hundreds of Earth masses of gas, therefore it is more di�-
cult to form a planet in this mass range. This can be seen both in
the histograms of in situ formation and when migration is con-
sidered: the mass bin M5 (planets with masses between 100 and
1000 M�) is the one with less amount of planets. However, when
comparing the mass fraction of each mass bin in the in situ and
migration histograms one should keep in mind that the numbers
where calculated considering only the surviving planets. While
this is always the case for the in situ calculations, it is not for
the migration case. Most of the planets lost due to migration are
in the mass bin M4 (10 to 100 M�). Therefore, in the in situ his-
tograms, the fraction of planets in this mass bin represents all the
planets formed in this mass range. On the other hand, when mi-
gration is considered this fraction only accounts for the planets
that survived.

Giant planet formation by accretion of 100 km planetesimals
results quite unlikely, if not impossible. In our simulations, to ac-
tually form giant planets we had to reduce the planetesimal size,
at least down to 0.1 km. However, assuming a uniform popula-
tion of small planetesimals which size remains unchanged dur-
ing the whole formation of the planet is also hard to explain. It
is not yet clear how planetesimal formation proceeds. Models
that explain the formation of planetesimals by direct collapse
in vortices in turbulent regions (Johansen et al. 2007) predict
a fast formation of very big planetesimals (rm > 100 km). On
the other hand, coagulation models can not be ruled out. A re-
cent study of Windmark et al. (2012) shows that direct growth of
planetesimals via dust collisions can lead to the growth of 0.1 km
planetesimals. Indeed, initially small planetesimals show better
matches to the observed size distribution of objects in the as-
teroid belt and among the TNOs. Weidenschilling (2011) shows
that the size distribution currently observed in the asteroid belt
in the range of 10 to 100 km can be better explained by an ini-
tial population of 0.1 km planetesimals. Kenyon and Bromley
(2012) conclude, by combining observations of the hot and cold
populations of TNOs with time constraints on their formation
process, that TNOs form from a massive disc mainly composed
of 1 km planetesimals.

Most probably the initial population of planetesimals in pro-
toplanetary discs is not uniform in size, but follows a size distri-
bution. Being the origin of planetesimals still under debate, we
have some freedom to make assumptions on the initial size dis-
tribution of planetesimals. From what we have shown, without
small planetesimals giant planet formation is di�cult to explain,
at least in the way we understand it now. However, even with an
initial population of small planetesimals, the collisions among
themselves are likely to be disruptive as soon as their random ve-
locities start to be excited by a planetary embryo. In fact, the time
for fragmentation of 0.1 km planetesimals in the neighbourhood
of a forming planet is around 104 years, much less than the for-
mation timescale of the planet. Therefore, it is also unlikely that
an initial population of only small planetesimals can be used to
explain the formation of giant planets. Moreover, we have shown
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Fig. 1.— Schematic of the coupling between the different processes entering in the computation of a self-consistent planet formation
model. Quantities exchanged by the different modules are indicated along arrows.

extremely fast and to allow exploration of a large number
of models. However, this approach does not provide self-
consistently a relation between the disc surface density and
the local pressure and temperature which enter in the cal-
culation of the structure of the growing planets as well as
in their migration rates. An intermediate approach consists
of using a model of viscously evolving discs (Shakura and
Sunyaev, 1973) for which the local vertical structure can be
computed (Papaloizou and Terquem, 1999; Alibert et al.,
2005a). Such an intermediate approach has the advantage
of providing the full structure of the disc and to provide the
framework to include self-consistently additional physical
processes such as photo-evaporation from the central star
and/or nearby stars, the existence of dead-zones, and irra-
diation from the central star. Both approaches are briefly
outlined below.

IL adopt the minimum mass solar nebula (MMSN)
model (Hayashi, 1981) as a fiducial set of initial conditions
and introduce multiplicative factors (fd and fg) to scale the
MMSN disc surface densities of gas (Σ) and planetesimals
(Σs). IL set

Σ = Σ10fg(r/10AU)
−q, (1)

where a normalization factor Σ10 = 75g/cm2 corresponds
to 1.4 times of Σ at 10AU of the MMSN model. The in-
ner disc boundary where Σ vanishes is set at ∼ 0.04AU. IL
often use a power law exponent q = 1 which corresponds
to the self-similar steady accretion disc model with a con-
stant α viscosity, rather than the original MMSN model for

which q = 1.5. However, they found that this does not
considerably affect the results.

Neglecting the detailed energy balance in the disc, IL
adopt the equilibrium temperature distribution of optically
thin discs prescribed by Hayashi (1981),

T = 280
( r

1AU

)−1/2
(
L∗
L⊙

)1/4

K, (2)

where L∗ and L⊙ are respectively stellar and solar lumi-
nosity. IL determine the position of the ice line (aice) as the
location at which T = 170K, which translates for a opti-
cally thin disc into (Eq. [2])

aice = 2.7(L∗/L⊙)
1/2AU. (3)

Due to viscous diffusion and photo-evaporation, fg de-
creases with time. For simplicity, IL adopt

fg = fg,0 exp(−t/τdep), (4)

where τdep is the disc lifetime (for detailed discussion, see
Ida and Lin 2008a). IL use τdep as a free parameter rang-
ing from 106yrs to 107yrs. The self-similar solution with
Σ ∝ r−1 has an asymptotic exponential cut-off at radius rm
of the maximum viscous couple. In the region at r < rm,
Σ decreases uniformly independent of r as the exponential
decay does, although the time dependence is slightly differ-
ent. Note that this treatment is relevant in the regime where
the disc mass depletion rate by photo-evaporation is so low
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Fig. 1.— Schematic of the coupling between the different processes entering in the computation of a self-consistent planet formation
model. Quantities exchanged by the different modules are indicated along arrows.
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rate equations

cause opacity in the envelope is highly uncertain. Note that
Mc,hydro depends on the planetesimal-accretion rate Ṁc.
Since Mc,hydro can be comparable to an Earth-mass M⊕
after the core accretes most of planetesimals in its feeding
zone, whether the core becomes a gas giant planet is actu-
ally regulated by a timescale of the subsequent quasi-static
envelope contraction (Kelvin-Helmholtz contraction time)
rather than the value of Mc,hydro.

Because the contraction of the gas envelope also releases
energy to produce pressure to support the gas envelope it-
self, the contraction is quasi-static. Its rate is still regulated
by the efficiency of radiative/convective transfer in the en-
velope such that

dMplanet

dt
≃ Mplanet

τKH
, (27)

where Mplanet is the planet mass including gas envelope.
Based on the results by 1D calculations (Ikoma et al., 2001),
IL approximate the Kelvin-Helmholtz contraction timescale
τKH of the envelope with

τKH ≃ τKH1

(
Mplanet

M⊕

)−k2

, (28)

where τKH1 is the contraction timescale for Mplanet = M⊕.
Since there are uncertainties associated with dust sedimen-
tation and opacity in the envelope (Pollack et al., 1996;
Helled et al., 2008; Hori and Ikoma, 2011), IL adopt a
range of values τKH1 = 108 − 1010 years and k2 = 3–
4 with nominal parameters of k2 = 3 and τKH1 = 109

years. Eq. (27) shows that dMplanet/dt rapidly increases
as Mplanet grows. However, it is limited by the global gas
accretion rate throughout the disc and by the process of gap
formation near the proto-planets’ orbits, as discussed later.

The AMB approach consists of solving the standard in-
ternal structure equations (Bodenheimer and Pollack, 1986)

dr

dMr
=

1

4πρr2
(29)

dP

dMr
= −GMr

4πr4
(30)

dT

dP
= ∇ad or ∇rad (31)

where r, P, T are the radius, pressure, and temperature
which are specified as a function of the mass Mr which
represents the mass inside a sphere of radius r (including
the mass of the core Mcore). Stability against convection
is checked using the Schwarzschild criterion (e.g. Kippen-
hahn and Weigert, 1994). Depending upon if convection
is present or not, the adiabatic gradient (∇ad) or the radia-
tive gradient (∇rad) is used. These equations are solved to-
gether with the equation of state (EOS) by Saumon et al.
(1995). The opacity is taken from Bell and Lin (1994).
Podolak (2003) and Movshovitz and Podolak (2008) have
argued that grain opacities are significantly reduced in plan-
etary envelopes as compared to the interstellar medium. Re-
ducing the grain opacity allows runaway accretion to occur

at smaller core masses and therefore speeds-up the giant
formation timescale (Pollack et al. 1996; Hubickyj et al.
2005).

In order to gain computing time and to avoid numerical
convergence difficulties, the energy equation is not solved.
Instead the procedure outlined by Mordasini et al. (2012a),
based on total energy conservation, is adopted with a small
improvement which allows to take the energy of the core
into account as well as described in (Fortier et al., 2013).
The total luminosity L = Lcont+Lacc is the sum of the en-
ergy gained through the contraction of the envelope Lcont

and by the accretion of planetesimals Lacc. The contrac-
tion luminosity, assumed to be constant throughout the en-
velope, is computed from the change of energy of the planet
between the time t and t+ dt

Lcont = −Etot(t+ dt)− Etot(t)− Egas,acc

dt
(32)

where Etot is the total planetary energy and Egas,acc =
dtṀgasuint is the energy gained by the accretion of nebular
gas with a specific internal energy uint at a rate Ṁgas. The
luminosity associated with the accretion of planetesimals,
which are assumed to deposit their energy onto the core,
can be written

Lacc = G
ṀcoreMcore

Rcore
(33)

where Ṁcore is the mass accretion rate of the planetesimals
which results in an increase in the core mass Mcore and ra-
dius Rcore. It has to be noted that at Lcont cannot be com-
puted in a straightforward manner since in order to compute
Etot(t+ dt) the structure of the envelope at t+ dt needs to
be known. This difficulty can be circumvented with the help
of an iterative scheme (Fortier et al., 2013).

The internal structure equations are solved with four
boundary conditions: 1) the radius of the core Rcore, 2) the
total radius of the planet RM , 3) the surface temperature of
the planet Tsurf , and 4) the surface pressure Psurf . With
these boundary conditions the structure equations provide a
unique solution for a given planet mass.

The core radius can be calculated (module 8 in Fig. 1)
for a given core mass, composition (rocky or icy) and pres-
sure at its surface (relevant for planets with a massive H/He
envelope). AMB solve the internal structure equations for a
differentiated core using a simple modified polytropic equa-
tion of state for the density ρ as a function of pressure P
(Seager et al., 2007)

ρ(P ) = ρ0 + cPn (34)

where ρ0, c, and n are material parameters. This EOS
neglects the relatively small temperature dependency of ρ
for solids. Therefore it is sufficient to consider only the
equations of mass conservation and hydrostatic equilibrium
(Eqs. 29 and 30) to calculate the core’s internal structure
and radius (for details, see Mordasini et al., 2012b). Re-
garding the composition, for rocky material, a silicate-iron
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ṀcoreMcore

Rcore
(33)
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A. Fortier et al.: Planetary formation

Fig. 13. Example of the formation of a planetary system. Left panel shows the evolution of the semi-major axis of the protoplanets versus time.
Accreted planets are indicated with a big dot, ejected planets with a cross. The final masse of the surviving planets is written on the right of the
figure. Right panel depicts the eccentricity of planetesimals in the disc as a function of time (x-axis) and semi-major axis (y-axis). The colour bar
indicates the eccentricity values.

their final masses are determined by the coupled evolution of the
disc and the planet. Considering both migration and oligarchic
growth for the solid component of the planet has consequences
in the mass interval of a few tens Earth masses. These planets
find it to hard to survive, as their migration rate is larger than
their accretion rate (dominated by the accretion of solids), and
they are often lost in the central star. Planets that are between 10
and 100 Earth masses are usually undergoing inward type I mi-
gration. Only in the cases where the gas component of the disc
dissipates during this process allows to end up with planets in
this mass range. Indeed, if we calculate in situ models, planets in
this mass range are produced in the same fraction as giant plan-
ets in the mass bin M6 (103 to 104 M�). This is shown in Fig.14,
where we have used the same mass bins are in the previous fig-
ures, but now the colour bars of the histograms represent their
fixed location and not the change in semi major axis. Planets that
are in the mass range M4 are also planets that did not have the
possibility to start the runaway gas accretion phase. Planets ac-
creting gas in a runaway fashion grow exponentially with time,
so they leave the mass range of a few tens Earth masses very
fast and jump to several Jupiter masses. This has also an e↵ect
in planets with masses between a Saturn mass and a few Jupiter
masses: once the runaway of gas starts, planets can easily ac-
crete hundreds of Earth masses of gas, therefore it is more di�-
cult to form a planet in this mass range. This can be seen both in
the histograms of in situ formation and when migration is con-
sidered: the mass bin M5 (planets with masses between 100 and
1000 M�) is the one with less amount of planets. However, when
comparing the mass fraction of each mass bin in the in situ and
migration histograms one should keep in mind that the numbers
where calculated considering only the surviving planets. While
this is always the case for the in situ calculations, it is not for
the migration case. Most of the planets lost due to migration are
in the mass bin M4 (10 to 100 M�). Therefore, in the in situ his-
tograms, the fraction of planets in this mass bin represents all the
planets formed in this mass range. On the other hand, when mi-
gration is considered this fraction only accounts for the planets
that survived.

Giant planet formation by accretion of 100 km planetesimals
results quite unlikely, if not impossible. In our simulations, to ac-
tually form giant planets we had to reduce the planetesimal size,
at least down to 0.1 km. However, assuming a uniform popula-
tion of small planetesimals which size remains unchanged dur-
ing the whole formation of the planet is also hard to explain. It
is not yet clear how planetesimal formation proceeds. Models
that explain the formation of planetesimals by direct collapse
in vortices in turbulent regions (Johansen et al. 2007) predict
a fast formation of very big planetesimals (rm > 100 km). On
the other hand, coagulation models can not be ruled out. A re-
cent study of Windmark et al. (2012) shows that direct growth of
planetesimals via dust collisions can lead to the growth of 0.1 km
planetesimals. Indeed, initially small planetesimals show better
matches to the observed size distribution of objects in the as-
teroid belt and among the TNOs. Weidenschilling (2011) shows
that the size distribution currently observed in the asteroid belt
in the range of 10 to 100 km can be better explained by an ini-
tial population of 0.1 km planetesimals. Kenyon and Bromley
(2012) conclude, by combining observations of the hot and cold
populations of TNOs with time constraints on their formation
process, that TNOs form from a massive disc mainly composed
of 1 km planetesimals.

Most probably the initial population of planetesimals in pro-
toplanetary discs is not uniform in size, but follows a size distri-
bution. Being the origin of planetesimals still under debate, we
have some freedom to make assumptions on the initial size dis-
tribution of planetesimals. From what we have shown, without
small planetesimals giant planet formation is di�cult to explain,
at least in the way we understand it now. However, even with an
initial population of small planetesimals, the collisions among
themselves are likely to be disruptive as soon as their random ve-
locities start to be excited by a planetary embryo. In fact, the time
for fragmentation of 0.1 km planetesimals in the neighbourhood
of a forming planet is around 104 years, much less than the for-
mation timescale of the planet. Therefore, it is also unlikely that
an initial population of only small planetesimals can be used to
explain the formation of giant planets. Moreover, we have shown
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Since Mc,hydro can be comparable to an Earth-mass M⊕
after the core accretes most of planetesimals in its feeding
zone, whether the core becomes a gas giant planet is actu-
ally regulated by a timescale of the subsequent quasi-static
envelope contraction (Kelvin-Helmholtz contraction time)
rather than the value of Mc,hydro.

Because the contraction of the gas envelope also releases
energy to produce pressure to support the gas envelope it-
self, the contraction is quasi-static. Its rate is still regulated
by the efficiency of radiative/convective transfer in the en-
velope such that

dMplanet

dt
≃ Mplanet

τKH
, (27)

where Mplanet is the planet mass including gas envelope.
Based on the results by 1D calculations (Ikoma et al., 2001),
IL approximate the Kelvin-Helmholtz contraction timescale
τKH of the envelope with
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(
Mplanet

M⊕

)−k2

, (28)

where τKH1 is the contraction timescale for Mplanet = M⊕.
Since there are uncertainties associated with dust sedimen-
tation and opacity in the envelope (Pollack et al., 1996;
Helled et al., 2008; Hori and Ikoma, 2011), IL adopt a
range of values τKH1 = 108 − 1010 years and k2 = 3–
4 with nominal parameters of k2 = 3 and τKH1 = 109

years. Eq. (27) shows that dMplanet/dt rapidly increases
as Mplanet grows. However, it is limited by the global gas
accretion rate throughout the disc and by the process of gap
formation near the proto-planets’ orbits, as discussed later.

The AMB approach consists of solving the standard in-
ternal structure equations (Bodenheimer and Pollack, 1986)

dr

dMr
=

1

4πρr2
(29)

dP

dMr
= −GMr

4πr4
(30)

dT

dP
= ∇ad or ∇rad (31)

where r, P, T are the radius, pressure, and temperature
which are specified as a function of the mass Mr which
represents the mass inside a sphere of radius r (including
the mass of the core Mcore). Stability against convection
is checked using the Schwarzschild criterion (e.g. Kippen-
hahn and Weigert, 1994). Depending upon if convection
is present or not, the adiabatic gradient (∇ad) or the radia-
tive gradient (∇rad) is used. These equations are solved to-
gether with the equation of state (EOS) by Saumon et al.
(1995). The opacity is taken from Bell and Lin (1994).
Podolak (2003) and Movshovitz and Podolak (2008) have
argued that grain opacities are significantly reduced in plan-
etary envelopes as compared to the interstellar medium. Re-
ducing the grain opacity allows runaway accretion to occur

at smaller core masses and therefore speeds-up the giant
formation timescale (Pollack et al. 1996; Hubickyj et al.
2005).

In order to gain computing time and to avoid numerical
convergence difficulties, the energy equation is not solved.
Instead the procedure outlined by Mordasini et al. (2012a),
based on total energy conservation, is adopted with a small
improvement which allows to take the energy of the core
into account as well as described in (Fortier et al., 2013).
The total luminosity L = Lcont+Lacc is the sum of the en-
ergy gained through the contraction of the envelope Lcont

and by the accretion of planetesimals Lacc. The contrac-
tion luminosity, assumed to be constant throughout the en-
velope, is computed from the change of energy of the planet
between the time t and t+ dt

Lcont = −Etot(t+ dt)− Etot(t)− Egas,acc

dt
(32)

where Etot is the total planetary energy and Egas,acc =
dtṀgasuint is the energy gained by the accretion of nebular
gas with a specific internal energy uint at a rate Ṁgas. The
luminosity associated with the accretion of planetesimals,
which are assumed to deposit their energy onto the core,
can be written

Lacc = G
ṀcoreMcore

Rcore
(33)

where Ṁcore is the mass accretion rate of the planetesimals
which results in an increase in the core mass Mcore and ra-
dius Rcore. It has to be noted that at Lcont cannot be com-
puted in a straightforward manner since in order to compute
Etot(t+ dt) the structure of the envelope at t+ dt needs to
be known. This difficulty can be circumvented with the help
of an iterative scheme (Fortier et al., 2013).

The internal structure equations are solved with four
boundary conditions: 1) the radius of the core Rcore, 2) the
total radius of the planet RM , 3) the surface temperature of
the planet Tsurf , and 4) the surface pressure Psurf . With
these boundary conditions the structure equations provide a
unique solution for a given planet mass.

The core radius can be calculated (module 8 in Fig. 1)
for a given core mass, composition (rocky or icy) and pres-
sure at its surface (relevant for planets with a massive H/He
envelope). AMB solve the internal structure equations for a
differentiated core using a simple modified polytropic equa-
tion of state for the density ρ as a function of pressure P
(Seager et al., 2007)

ρ(P ) = ρ0 + cPn (34)

where ρ0, c, and n are material parameters. This EOS
neglects the relatively small temperature dependency of ρ
for solids. Therefore it is sufficient to consider only the
equations of mass conservation and hydrostatic equilibrium
(Eqs. 29 and 30) to calculate the core’s internal structure
and radius (for details, see Mordasini et al., 2012b). Re-
garding the composition, for rocky material, a silicate-iron
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Formation & evolution model: Bern model
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Outlines

1- Exoplanets and population synthesis

2- From disks to planets: integrated models

3- Population synthesis: comparison and results

4- Pebbles versus planetesimals



Population synthesis

Formation & evolution model Initial Conditions

Compute synthetic  
planet population

Apply observational 
detection bias

Predictions 
(going back to the full 
synthetic population)

Observed population

 Ida & Lin 2004-2013, Thommes et al. 2008, Mordasini et al. 2009-2012, Miguel et al. 2011, Hellary & Nelson 2012, Alibert et al. 2013, Pfyffer et al. 2014

Model  
solution  
found MatchNo match: improve, 

change parameters 

Observable sub-population 
- Distribution of semi-major axis 
- Distribution of masses 
- Distribution of luminosities 
- Distribution of radii

Comparison:

No match Match 
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Planetesimal based: gas fraction

Swoboda et al. in prep
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Observations Synthetic 

Mayor et al. 2011 Benz et al. 2014

10.0 100.0 1000.
 0

 100

 200

M2sini distribution (complete sample)

M2sini   [Earth Mass]
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corrected
observed

Raw number 
Correct for obs. bias

Typical for core accretion. Constraint on Mcrit  & gas accretion rate .
Sudden increase

Planetesimal based: mass function



Effect of Ocean massTesting models with transit observations

Kepler - bias corrected Fulton et al. 2017

12 Fulton et al.

Fig. 10.— Top: Two-dimensional distribution of planet size and incident stellar flux. The median uncertainty is plotted in the upper
left. There are at least two peaks in the distribution. One class of planets has typical radii of ⇠1.3 R� and generally orbit in environments
with Sinc >100 S�, while another class of slightly larger planets with typical radii of ⇠2.4 R� orbit in less irradiated environments with
Sinc < 200 S�. Bottom: Same as top panel with individual planet detection points removed, annotations added, and vertical axis scaling
changed. The lack of planets to the upper left of the dashed blue line is likely due to photo-evaporation. The shaded region in the lower right
indicates low completeness. Pipeline completeness in this region is less than 25%. The purple and black lines show the scaling relations for
the photoevaproation valley predicted by Lopez & Rice (2016) for scenarios where these planets are the remnant cores of photoevaporated
Neptune size planets (dashed purple line) or that these planets are formed at late times in a gas-poor disk (dotted black line).
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indicates low completeness. Pipeline completeness in this region is less than 25%. The purple and black lines show the scaling relations for
the photoevaproation valley predicted by Lopez & Rice (2016) for scenarios where these planets are the remnant cores of photoevaporated
Neptune size planets (dashed purple line) or that these planets are formed at late times in a gas-poor disk (dotted black line).
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4- Formation of planets at large distance - timescale problem

-> ejection?

Planetesimal based: sucesses and problems

3- Works better with low mass planetesimals (~km)

1- Predicted mass function is similar to observed one

2- Disk size similar to observations / masses in the higher end of    
    the distribution

-> outwards migration?
-> another formation mechanism? 



Testing models with microlensing observations
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Theoretical lens population including 
mass and metallicity distributions
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Testing models with microlensing observations
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Testing models with microlensing observations

Theoretical lens population including 
mass and metallicity distributions Theoretical observable lens 

population
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Testing models with microlensing observations

Theoretical observable lens 
population

Alibert et al. 2011 (unpublished)



Semi-major axis

Lenses at 0.5 kpc

Lenses at 6 kpc

Alibert et al. 2011 (unpublished)



Mass

Lenses at 0.5 kpc

Lenses at 6 kpc

Alibert et al. 2011 (unpublished)



Outlines

1- Exoplanets and population synthesis

2- From disks to planets: integrated models

3- Population synthesis: comparison and results

4- Pebbles versus planetesimals



What is the mass of core’s building blocks?

⇒

⇒

Planetesimals-based model Pebbles-based model

dust ~ microns

pebbles ~ cm

planetesimals ~ km

⇒

⇒

high efficiency low efficiency



Planetesimal based: Integrated model

1- protoplanetary disk evolution 

2- planet internal structure (core & envelope) 

3- orbital migration 

4- planet-planet interactions (gravity & competition)

Alibert, Mordasini, Benz 2004; Alibert et al. 2005, Mordasini et al. 2012, Alibert et al. 2013, Pfyffer et al. 2014, Alibert & Benz 2016, Swoboda et al. in prep…



4- Formation of planets at large distance - timescale problem

-> ejection?

Planetesimal based: sucesses and problems

3- Works better with low mass planetesimals (~km)

1- Predicted mass function is similar to observed one

2- Disk size similar to observations / masses in the higher end of    
    the distribution

-> outwards migration?
-> another formation mechanism? 



Pebble based: Integrated model

1- protoplanetary disk evolution 

2- no planet internal structure 

3- orbital migration 

4- no planet-planet interactions (one planet per system)



Pebble-based model: rapid formation of planetary cores

Origin of pebbles as a function of time

Final location of planets

Original location of planets
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Bitsch et al. 2015 



Mgas = 10% Mplanet

Mgas = 50% Mplanet

Pebble-based model: few Neptune mass planets - no HN

iceline < 1 AU in < 1 Myr Bitsch et al., 2015



Pebble based: sucesses and problems

3- Formation of Neptune planets very unlikely - no Hot Neptunes

1- No timescale problem (even inversed timescale problem)

2- All disks are observed with pebbles, but they should drift 
    to the star and disappear very rapidly -> recycling process?

4- Pebbles are destroyed in the planetary envelope 

-> are they all formed by collision of smaller planets?
-> rotation axis of exo-Neptunes?



Maximum mass of planets formed by pebble accretion

accreted pebble
Alibert,astroph-1705.06008

Ormel et al. 2015

-> accreted pebbles interact with the envelope (gas drag)



Maximum mass of planets formed by pebble accretion

1-2 Mearth

accreted pebble

pollution (1)

Alibert,astroph-1705.06008

Ormel et al. 2015

-> heavy material is dispersed and vaporized in the envelope  
    and does not reach the core



Maximum mass of planets formed by pebble accretion

1-2 Mearth

accreted pebble

fresh gas
from the disk

polluted gas
returning to

the disk

pollution (1)

replenishment (2)

Alibert,astroph-1705.06008

Ormel et al. 2015



Maximum mass of planets formed by pebble accretion

1-2 Mearth

accreted pebble

fresh gas
from the disk

polluted gas
returning to

the disk

gas remains unpolluted if (2) is more rapid than (1), i.e. inside ~ 10 AU

pollution (1)

replenishment (2)

Alibert,astroph-1705.06008

Ormel et al. 2015



Maximum mass of planets formed by pebble accretion

During core growth by pebble accretion, when the core is larger 
than ~ 1-2 Mearth:

-> heavy material is dispersed and vaporized in the envelope  
    and does not reach the core

-> the total mass of heavy elements is limited to 1-2 Mearth

heavy material cannot accumulate neither in the core nor in the 
envelope, gas cannot be accreted, the planetary growth stops at ~ 1-2 

Mearth

-> the planet cannot accrete gas because it is too small 

-> no planet larger than ~1-2 Mearth can form directly by pebble 
accretion inside ~10 AU

-> the heavy elements cannot accumulate in the envelope 
     because of mass exchange with the disk, inside ~10 AU



Conclusions

Do not mix integrated models and population synthesis

   1- integrated models = stellar evolution models

   2- population synthesis = compute HR diagram

   1- get global picture of planetary formation

   2- understand/predict planet statistics from different observation 
means

Population synthesis model can be used for:

Population synthesis models require the knowledge of the bias - ‘blind’ 
observations better to avoir the ‘observer bias’

Microlensing observations constraint a part of the aM diagram that is
not probed by other means        strong constraint on models⇒


