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Our goal 
•  Given the data, we look for a model to explain them 

t0 = 7467.45 
tE = 7.62 
u0 = 0.241 
α = 0.988 
ρ* = 0.033 
s = 0.906 
q = 0.935 
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Summary 
•  Finding the best model 

•  Downhill methods 
•  Markov Chain 

•  Degeneracies 

•  Uncertainty assessment 

•  Bayesian analysis 

•  Initial conditions 



Likelihood and χ2 
1. Finding the best model 

•  Given a model f, the probability that an experiment returns the 
data yi with uncertainty σi is the likelihood: 
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•  An estimate of the best model is obtained by maximizing the 
likelihood, or minimizing the chi square:  
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•  The χ2 is just a function of the model and its parameters. 
•  Fitting microlensing events is a minimization problem for  

the χ2.  



Fitting microlensing events 
1. Finding the best model 

•  If we are able to calculate the magnification for a given model 
at any times, we can easily evaluate the corresponding χ2. 

•  Binary microlensing light curves are characterized by a 
minimum of 7 parameters. 

•  These parameters come linearly and can be found analytically 
by a least-squares fit for any given model. 

•  Now we need a minimization algorithm! 

( ) Bii FtfFy += p,*

•  In addition, for each dataset we have two calibration 
parameters: source and background flux. 
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Steepest descent 
•  If χ2 depends on m parameters                           , its gradient is  
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•  The steepest descent is then implemented by choosing 
2

1 χα∇−=+ nn pp

•  α is determined by a search along the direction of the 
gradient. 

{ }mpp ,,1 …=p

1.1 Downhill methods 



Gauss-Newton method 
•  Let us set                        . 
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•  The approximate solution for Δ is obtained by a linear set 
of equations 

Δpp +=+ nn 1

•  If Δ is such that pn+1 is a minimum, then 
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•  Convergence is not guaranteed if we are too far from 
minimum 

1.1 Downhill methods 



Levenberg method 
•  Interpolates between the two methods, switching from 

Gauss-Newton to steepest descent when the first fails. 
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•  We modify the normal equations by introducing a 
parameter λ 

•  If λ is small, the normal equations work as in Gauss-Newton. 
•  If λ is large, the new term dominates and Δ is rotated toward 

the steepest descent direction. 

1.1 Downhill methods 



Levenberg-Marquardt algorithm 
•  Steepest descent may be inefficient if there are directions 

in which χ2 is very flat. 
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•  The final version of the modified normal equations is 

•  In Levenberg-Marquardt algorithm, we start from a value 
of λ close to 1. 

•  We calculate Δ; if                                      , we accept the 
new point                       and decrease λ. 

•  If not, we reject the new point and increase λ. 
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1.1 Downhill methods 



Implementation of Levenberg-Marquardt 
•  We need to calculate the gradient vector ⎟⎟
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•  The derivatives require the calculation of magnification at 
two points spaced by dpi. This is the slowest step. 

•  The resolution of normal equations can be done by 
standard Gauss method, Cholesky decomposition… 

•  Levenberg-Marquardt algorithm (nearly) always finds a 
local minimum. 

•  It is also very very fast. 

•  It might get stuck at a local minimum. 
•  How do we find the best minimum? 

1.1 Downhill methods 



Jumping out of minima 
•  One possibility to enlarge our search is to add a penalty on the χ2 function. 

•  Once we find the first minimum, we try to fill it with a bumper and run the fit 
again. 

•  If the bumper is small, the fit will still remain in the same dip. 

•  If the bumper is large enough, the fit will jump out of the hole and discover a 
different minimum. 

1.1 Downhill methods 



Downhill simplex (Nelder-Mead) 
•  In m dimensions, consider a simplex 

made of m+1 points { }11 ,, +mxx …
•  Let       be the barycenter of the best 

m points. 
0x

•  The worst point is replaced by its 
reflection with respect to      :  0x

( )100 +−+= mnew xxxx γ
•  There are rules for expansion or contraction by tuning γ. 

•  No need to calculate gradients.  

1.1 Downhill methods 



Differential evolution 
•  Start from a population of NP ≥ 4 points (“agents”) { }NPxx ,,1 …
•  For each agent x, pick three more random agents a,b,c.  
•  Generate a new point y whose components are  

( )iiii cbway −+= with some probability CR 

ii xy = otherwise. 

•  One random component is always changed. 

•  If                          then the new agent replaces the old one.  ( ) ( )xy 22 χχ <

1.1 Downhill methods 



Markov Chain Monte Carlo 
1.2 Markov Chain 

•  For a recent review see: 
“Markov Chain Monte Carlo Methods for Bayesian Data Analysis in 
Astronomy”, S. Sharma, arXiv:1706.01629. 

•  MCMC is NOT a minimization algorithm! 
•  MCMC samples a probability distribution:  

the best model is just a by-product.  

•  In this example, after 10000 points, a 
Markov chain finds the best model at 
accuracy 3×10-3. 

•  The same accuracy is reached by a 
steepest descent algorithm in 8 steps. 



Markov Chain Monte Carlo 
•  Given the point xn in the chain, we randomly draw a candidate 

new point y from a proposal probability distribution q(y|x). 

•  If p(y)>p(x), we accept the proposal and set xn+1 = y. 
•  If p(y)<p(x), we accept the proposal with probability p(y)/p(x), 

otherwise we set xn+1 = xn. (Metropolis algorithm) 

•  In the limit of large numbers, the 
chain will become a representative 
sampling of the probability 
distribution p. 

•  In our optimization problems, we set p 
= L =exp(-χ2/2). 

•  The “burn-in” must be discarded. 

1.2 Markov Chain 



Efficient Markov chains 
•  The proposal probability distribution q(y|x) is crucial to sample 

the space in the shortest time.  
•  It is forbidden to change it during the Markov chain. 
•  We can use a uniform distribution centered 

on x within some ranges, a multivariate 
gaussian or similar. 

•  The size in each direction can be adapted using the local 
gradient at the initial conditions. 

•  A too large q(y|x) will generate very unlikely proposals 
•  A too small q(y|x) will only sample locally and never reach 

convergence. 

x 

•  The acceptance rate should be in the range [0.2, 0.6], with a 
preference for smaller values at large dimensions. 
(0.23 is optimal for infinite dimensions) 

1.2 Markov Chain 



Convergence 

•  A Markov chain has converged if, divided into several chunks, 
each chunk represents a sampling of the same distribution. 

•  Markov chains have the ability of jumping out of local minima. 

•  Convergence tests 
include 
autocorrelation 
measures or 
correlations among 
several 
independent 
chains. 

1.2 Markov Chain 



Simulated annealing 

•  At high temperature, all probability ratios tend to 1 and the 
Markov chain is free to move everywhere. 

•  Let us introduce the “temperature” T, modifying the probability: 
( )Tp 2
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•  The idea (Kirkpatrick et al. 
1983) is to start at high 
temperature to explore 
the whole parameter 
space and gradually 
lower the temperature to 
pinpoint the best model.  

1.2 Markov Chain 
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Simulated annealing 

•  At high temperature, all probability ratios tend to 1 and the 
Markov chain is free to move everywhere. 
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1.2 Markov Chain 



Confidence intervals 
2. Uncertainty assessment 

•  Once we have sampled our likelihood, we can build histograms 
on any parameters. 

•  Confidence intervals can be obtained:  
1) Sort bins according to their height  
2) Retain higher bins until you reach the desired CL (e.g. 90%) 
3) The CL range is then given by the positions of the two 
farthest bins on left and right. 



Correlation plots 
•  We can produce density 

plots on planes defined by 
any pair of parameters. 

•  We can define confidence 
contours in the same way. 

•  This is useful to visualize 
and detect degeneracies. 

2. Uncertainty assessment 



Fisher and covariance matrices  
•  A common misconception is that MCMC is the only way to 

obtain the uncertainties in our parameter estimates. 

•  If you get the best model from other algorithms (e.g. LM), the 
shape of the minimum is obtained by the Fisher matrix 
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•  The covariance matrix is just the inverse of the Fisher matrix 
( )mnmn F 1cov −=

•  The variance of each parameter is 
read along the diagonal of this 
matrix. 

2. Uncertainty assessment 



Degeneracies in microlensing 
•  A degeneracy exists when the same data can be explained by 

many different models with the same likelihood. 
•  We can have continuous degeneracies (e.g. q/s) 
•  … or discrete degeneracies (e.g. wide/close) 

3. Degeneracies 

•  Degeneracies can be “strong” i.e. inherent to gravitational 
lensing physics itself, 

•  … or “accidental” if they arise only because of observational 
shortcomings (gaps, poor sampling, noise, systematics). 



Discrete degeneracies 
•  Close/Wide degeneracy in planets 

3. Degeneracies 

s
s 1
↔

OB160241 

•  The central caustic is invariant under the transformation  

•  All planetary perturbations due to the central caustic suffer from 
this degeneracy. 



Discrete degeneracies 
•  Close/Wide degeneracy in binaries 

3. Degeneracies 

MB16341 

•  The Chang & Refsdal caustic in the wide regime and the 
quadrupole caustic in the close regime are very similar. 

•  In addition, the four cusps of a Chang & Refsdal are equivalent 
(4 possible sub-cases). 



Discrete degeneracies 
3. Degeneracies 

•  Han & Gaudi (2008) degeneracy 
OB151212 •  Light curves with a double peak 

can be explained by a close 
approach to a Chang & Refsdal 
astroidal caustic 

•  … or by the approach to the 
back of a central caustic in the 
planetary regime.  

•  In either case we have the close/wide sub-
cases and all possible cusp approaches for 
the binary. 



3. Degeneracies 

•  Intermediate binary degeneracies 
 The intermediate binary caustic is very 
extended. Trajectories crossing different 
folds may lead to very similar light curves 

Discrete degeneracies 

OB171268 



3. Degeneracies 

•  Satellite degeneracy 
 Similarly to what happens for PSPL events, if we have 
observations from space, we have four options for the signs of 
u0,Earth and u0,satellite. 

Discrete degeneracies 



3. Degeneracies 

•  s/q degeneracy 
 The size of an astroid caustic 
depends on the combinations 

Continuous degeneracies 

OB160559 
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•  The mass ratio and 
separation are highly 
correlated and poorly 
known.  
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3. Degeneracies 

Alternative parameterizations 
•  The exploration of continuous 

degeneracies is particularly painful. 

•  We can rotate the box of 
the proposal distribution 
(easily achieved if we diagonalize 
the local Fisher matrix before 
starting the chain) 

x 

•  If the degeneracy is non-linear, 
choose new parameters ( ) ( )3
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•  Define the origin at the center of the caustic we wish to study. 

•  Fit the log of some parameters (s,q,ρ,tE). 

•  Use other combinations that are clearly established by the data 
(e.g. source crossing time t*, time of caustic crossing, …) 



3. Degeneracies 

Cassan parameters 
•  Cassan (2008) proposed to use the 

curvilinear abscissa along the 
caustic. 

•  u0, α, t0, tE are replaced by 
 tentry, sentry , texit , sexit. 



3. Degeneracies 

•  In general, distinct features in the lightcurve occurring at 
definite times (caustic crossing) couple the Einstein time to 
the (s,q) values. 

•  This mitigates the degeneracy between tE and u0 plaguing the 
PSPL. 

Walking through degeneracies 

•  For the same reason, different models may predict very different 
tE and thus very different blending ratios. 

•  Typically, planetary models mimicking binary models come at 
negative blending.  

•  Other hints may come from unlikely source radii or unlikely 
Einstein times. 

•  How do we quantify unlikeliness? 



4. Bayesian analysis 

•  For all parameters we can define an expected range of 
possible values. 

•  A uniform prior can be easily implemented by requiring that 
the proposal point is within the prior. 

Bayes’ theorem 

•  However, we may wish to use the information coming from 
previous studies to decide which model is more likely 
(stellar luminosity and mass functions, spatial distributions and velocities) 

•  This information typically comes in the form of (prior) 
distributions. 

•  Bayes theorem states that the posterior probability is the 
product of the likelihood from the data with the prior 
expectations: 
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4. Bayesian analysis 

•  In our MCMC we just have to 
sample the product  

Bayes in MCMC 
( ) ( ) ( )
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•  The normalization p(yi) cancels if we are only interested in 
relative posterior probabilities (ratios). 

•  Note that the priors may be distributions on combinations of the 
basic parameters (e.g. the mass of the lens). 

Likelihood 
Prior 

Posterior 



4. Bayesian analysis 

•  Microlensing events are normally occurring on source stars in 
the bulge lensed by stars in the disk/bulge. 

•  These objects follow some spatial distributions, mass, luminosity 
and velocity functions.  

•  In order to use Bayesian approach in microlensing we need a 
Galactic model. 

Priors in microlensing 

•  “Stochastic distributions of lens and source properties for observed galactic 
microlensing events”, Dominik (2006). 

•  “A synthetic view on structure and evolution of the Milky Way”, Robin et al. 
(2003) (Besançon model) 

•  “Stellar Contribution to the Galactic Bulge Microlensing Optical Depth”, Han & 
Gould (2003) 

•  Another combination of models is in Bennett et al. (2008) 

•  Blending light gives a further constraint (see Beaulieu’s talk). 



5. Initial conditions 

•  Microlensing parameter space is huge and full with local χ2 
minima. 

•  If we start from an arbitrary initial condition we would seldom 
end in the global minimum. 

Initial conditions 

•  We need to explore all the relevant parameter space and make 
sure we find the true best model(s). 

•  Two ways: 
•  Grid search 
•  Template library 



5. Initial conditions 

•  We may define a grid in the 
parameter space and start fits from 
all points. 

Grid search 

•  Many fits will just never converge 
•  Many fits will end up in the same 

minima. 
•  Many minima will be missed. 

•  A too coarse grid may miss possible candidate models. 
•  A too dense grid has many redundant or useless fits. 



5. Initial conditions 

•  Inverse-ray-shooting codes may keep 
(s,q) fixed in a first search, so as to 
use the same magnification map.   

Two-steps grid search 

•  Once these preliminary models are 
found, we can run a full fit including 
(s,q). 

•  Codes for a full Bayesian 
approach along these lines 
are available (ML/MAP/BIC) 
(Kains et al. 2012) 



5. Initial conditions 

•  It would be much more efficient to start the fit from an initial 
condition that resembles our data. 

•  We need to build a library of light curves covering all possible 
morphologies (Di Stefano & Mao 1996, Night et al. 2005). 

Template libraries 

•  The most systematic attempt has found 73 different 
morphologies out of 232 regions in the parameter space 
(Liebig et al. 2015) 

•  It was limited to  
equal-mass  
binaries! 

[bb ab1 at2] A2   



5. Initial conditions 

•  Light curves are classified 
according to the number 
and nature of their peaks 
(fold crossing, cusp approach, …) 

Template libraries 

•  Regions in the 
parameter space are 
identified after a 
scansion. 
(Liebig et al. 2015) 



5. Initial conditions 

•  Peaks in the dataset must be identified and ranked according 
to their prominence. 

Matching a template to data  

•  The two most prominent peaks must 
be matched to the most prominent 
peaks in the template. 

•  We get (s,q,u0,α,ρ) from the 
template. 

•  (t0,tE) are obtained by the peak 
matching. 

•  If there is only one peak, the anomaly time can be taken as the 
position of the second peak. 



5. Initial conditions 

•  RTModel (http://www.fisica.unisa.it/GravitationAstrophysics/RTModel.htm) 
is an automatic platform for real-time modeling.  

RTModel 

•  It takes data and anomaly alerts from ARTEMiS (
http://www.artemis-uk.org/). 

•  It uses matching from a library of 244 templates. 
•  For each initial condition, the Levenberg-Marquardt fit is 

repeated five times using the bumpers method. 
•  The calculation of the magnification is done by 

VBBinaryLensing. 
•  All models found are ranked by their χ2. 
•  Duplicates are removed if they fall within the same covariance 

ellipsoid. 
•  Models are posted on a public webpage automatically. 

•  RTModel runs on a 8-core workstation taking 2 hours per event. 



•  Higher order effects (parallax, orbital motion) may dramatically 
increase the number of light curve morphologies. 

Outlook 

•  Grid searches in too many dimensions are unfeasible. 
•  Template libraries require a long construction. 

•  Similar issues hold for triple and multiple lenses. 

•  In view of WFIRST, we need to improve our automatic modeling 
capabilities. 
pyLIMA, MulensModel 


