Fitting Light Curves in Microlensing

Valerio Bozza University of Salerno

Our goal

• Given the data, we look for a model to explain them

Summary

- Finding the best model
 - Downhill methods
 - Markov Chain
- Uncertainty assessment
- Degeneracies
- Bayesian analysis
- Initial conditions

1. Finding the best model

Likelihood and χ^2

 Given a model *f*, the probability that an experiment returns the data y_i with uncertainty σ_i is the **likelihood**:

$$\mathcal{L} = p(y_i | f) = \prod_i p_i(y_i | f) = N \exp \left[-\frac{1}{2} \sum_i \frac{(y_i - f(t_i))^2}{\sigma_i^2} \right]$$

Independent
measures
Statistical errors

 An estimate of the best model is obtained by maximizing the likelihood, or minimizing the chi square:

$$\chi^2 = \sum_i \frac{(y_i - f(t_i))^2}{\sigma_i^2}$$

- The χ^2 is just a function of the model and its parameters.
- Fitting microlensing events is a **minimization problem** for the χ^2 .

1. Finding the best model

Fitting microlensing events

- If we are able to calculate the magnification for a **given model** at any times, we can easily evaluate the **corresponding** χ^2 .
- Binary microlensing light curves are characterized by a minimum of **7 parameters**.
- In addition, for each dataset we have two calibration parameters: source and background flux.

$$y_i = F_* f(t_i, \mathbf{p}) + F_B$$

 These parameters come linearly and can be found analytically by a least-squares fit for any given model.

$$F_* = \frac{\sum \frac{1}{\sigma_i^2} \sum \frac{f_i y_i}{\sigma_i^2} - \sum \frac{f_i}{\sigma_i^2} \sum \frac{y_i}{\sigma_i^2}}{\sum \frac{1}{\sigma_i^2} \sum \frac{f_i^2}{\sigma_i^2} - \left(\sum \frac{f_i}{\sigma_i^2}\right)^2}; \qquad F_B = \frac{\sum \frac{y_i}{\sigma_i^2} \sum \frac{f_i^2}{\sigma_i^2} - \sum \frac{f_i}{\sigma_i^2} \sum \frac{f_i y_i}{\sigma_i^2}}{\sum \frac{1}{\sigma_i^2} \sum \frac{f_i^2}{\sigma_i^2} - \left(\sum \frac{f_i}{\sigma_i^2}\right)^2};$$

Now we need a minimization algorithm!

Steepest descent

• If χ^2 depends on *m* parameters $\mathbf{p} = \{p_1, \dots, p_m\}$, its gradient is

$$\nabla \chi^{2}(\mathbf{p}) = -2\sum_{i} \mathbf{J}_{i} \left[\frac{y_{i} - f(t_{i}, \mathbf{p})}{\sigma_{i}^{2}} \right]$$

where $\mathbf{J}_{i} = \left(\frac{\partial f_{i}}{\partial p_{1}}, \dots, \frac{\partial f_{i}}{\partial p_{m}} \right)$

The steepest descent is then implemented by choosing

$$\mathbf{p}_{n+1} = \mathbf{p}_n - \alpha \nabla \chi^2$$

• α is determined by a search along the direction of the gradient.

Gauss-Newton method

- Let us set $\mathbf{p}_{n+1} = \mathbf{p}_n + \Delta$.
- If Δ is such that \mathbf{p}_{n+1} is a minimum, then

$$0 = \nabla \chi^{2} (\mathbf{p}_{n} + \Delta) = -2 \sum_{i} \mathbf{J}_{i} \left[\frac{y_{i} - f(t_{i}, \mathbf{p}_{n} + \Delta)}{\sigma_{i}^{2}} \right] \cong$$
$$\approx -2 \sum_{i} \mathbf{J}_{i} \left[\frac{y_{i} - f(t_{i}, \mathbf{p}_{n}) - \mathbf{J}_{i} \cdot \Delta}{\sigma_{i}^{2}} \right]$$

- The approximate solution for Δ is obtained by a linear set of equations

$$\sum_{i} \mathbf{J}_{i} \left[\mathbf{J}_{i} \cdot \mathbf{\Delta} \right] = \sum_{i} \mathbf{J}_{i} \left[\frac{y_{i} - f(t_{i}, \mathbf{p}_{n})}{\sigma_{i}^{2}} \right]$$

 Convergence is not guaranteed if we are too far from minimum

Levenberg method

- Interpolates between the two methods, switching from Gauss-Newton to steepest descent when the first fails.
- We modify the normal equations by introducing a parameter $\boldsymbol{\lambda}$

$$\sum_{i} \mathbf{J}_{i} [\mathbf{J}_{i} \cdot \mathbf{\Delta}] + \lambda \mathbf{\Delta} = \sum_{i} \mathbf{J}_{i} [y_{i} - f(t_{i}, \mathbf{p}_{i})]$$

- If λ is small, the normal equations work as in Gauss-Newton.
- If λ is large, the new term dominates and Δ is rotated toward the steepest descent direction.

Levenberg-Marquardt algorithm

- Steepest descent may be inefficient if there are directions in which χ^2 is **very flat**.
- The final version of the modified normal equations is

$$\sum_{i} \left[\mathbf{J}_{i} (\mathbf{J}_{i} \cdot \mathbf{\Delta}) + \lambda |\mathbf{J}_{i}|^{2} \mathbf{\Delta} \right] = \sum_{i} \mathbf{J}_{i} \left[y_{i} - f(t_{i}, \mathbf{p}_{i}) \right]$$

- In Levenberg-Marquardt algorithm, we start from a value of λ close to 1.
- We calculate Δ ; if $\chi^2(\mathbf{p}_n + \Delta) < \chi^2(\mathbf{p}_n)$, we accept the new point $\mathbf{p}_{n+1} = \mathbf{p}_n + \Delta$ and decrease λ .
- If not, we reject the new point and increase λ .

Implementation of Levenberg-Marquardt

- We need to calculate the gradient vector $\mathbf{J}_i = \left(\frac{\partial f_i}{\partial p_1}, \dots, \frac{\partial f_i}{\partial p_m}\right)$
- The derivatives require the calculation of magnification at two points spaced by dp_i. This is the slowest step.
- The resolution of normal equations can be done by standard Gauss method, Cholesky decomposition...

- Levenberg-Marquardt algorithm (nearly) always finds a local minimum.
- It is also very very fast.
- It might get stuck at a local minimum.
- How do we find the best minimum?

Jumping out of minima

- One possibility to enlarge our search is to add a penalty on the χ^2 function.
- Once we find the first minimum, we try to fill it with a bumper and run the fit again.
- If the bumper is small, the fit will still remain in the same dip.
- If the bumper is large enough, the fit will jump out of the hole and discover a different minimum.

Downhill simplex (Nelder-Mead)

- In m dimensions, consider a simplex made of m+1 points $\{\mathbf{x}_1, \dots, \mathbf{x}_{m+1}\}$
- Let \mathbf{x}_0 be the barycenter of the best m points.
- The worst point is replaced by its reflection with respect to \mathbf{x}_0 : $\mathbf{x}_{new} = \mathbf{x}_0 + \gamma (\mathbf{x}_0 - \mathbf{x}_{m+1})$

- There are rules for expansion or contraction by tuning γ.
- No need to calculate gradients.

Differential evolution

- Start from a population of NP \ge 4 points ("agents") $\{\mathbf{x}_1, \dots, \mathbf{x}_{NP}\}$
- For each agent x, pick three more random agents *a*,*b*,*c*.
- Generate a new point y whose components are
 - $y_i = a_i + w(b_i c_i)$ with some probability CR $y_i = x_i$ otherwise.
- One random component is always changed.
- If $\chi^2(\mathbf{y}) < \chi^2(\mathbf{x})$ then the new agent replaces the old one.

Markov Chain Monte Carlo

- For a recent review see: "Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy", S. Sharma, arXiv:1706.01629.
- MCMC is NOT a minimization algorithm!
- MCMC samples a probability distribution: the best model is just a by-product.

- In this example, after 10000 points, a Markov chain finds the best model at accuracy 3×10⁻³.
- The same accuracy is reached by a steepest descent algorithm in 8 steps.

Markov Chain Monte Carlo

- Given the point x_n in the chain, we randomly draw a candidate new point y from a proposal probability distribution q(y|x).
- If p(y)>p(x), we accept the proposal and set $x_{n+1} = y$.
- If p(y) < p(x), we accept the proposal with probability p(y)/p(x), otherwise we set $x_{n+1} = x_n$. (*Metropolis algorithm*)
- In the limit of large numbers, the chain will become a representative sampling of the probability distribution p.
- The "burn-in" must be discarded.
- In our optimization problems, we set p = $\mathcal{L} = \exp(-\chi^2/2)$.

Efficient Markov chains

- The proposal probability distribution q(y|x) is crucial to sample the space in the shortest time.
- It is forbidden to change it during the Markov chain.
- We can use a uniform distribution centered on x within some ranges, a multivariate gaussian or similar.

- The size in each direction can be adapted using the local gradient at the initial conditions.
- A too large q(y|x) will generate very unlikely proposals
- A too small q(y|x) will only sample locally and never reach convergence.
- The acceptance rate should be in the range [0.2, 0.6], with a preference for smaller values at large dimensions. (0.23 is optimal for infinite dimensions)

Convergence

- Markov chains have the ability of jumping out of local minima.
- A Markov chain has converged if, divided into several chunks, each chunk represents a sampling of the same distribution.
- Convergence tests include autocorrelation measures or correlations among several independent chains.

Simulated annealing

- Let us introduce the "**temperature**" T, modifying the probability: $p = \exp\left(-\frac{\chi^2}{2T}\right)$
- At high temperature, all probability ratios tend to 1 and the Markov chain is free to move everywhere.
- The idea (Kirkpatrick et al. 1983) is to start at high temperature to explore the whole parameter space and gradually lower the temperature to pinpoint the best model.

Simulated annealing

- Let us introduce the "**temperature**" T, modifying the probability: $p = \exp\left(-\frac{\chi^2}{2T}\right)$
- At high temperature, all probability ratios tend to 1 and the Markov chain is free to move everywhere.
- The idea (Kirkpatrick et al. 1983) is to start at high temperature to explore the whole parameter space and gradually lower the temperature to pinpoint the best model.

Simulated annealing

- Let us introduce the "**temperature**" T, modifying the probability: $p = \exp\left(-\frac{\chi^2}{2T}\right)$
- At high temperature, all probability ratios tend to 1 and the Markov chain is free to move everywhere.
- The idea (Kirkpatrick et al. 1983) is to start at high temperature to explore the whole parameter space and gradually lower the temperature to pinpoint the best model.

2. Uncertainty assessment

Confidence intervals

 Once we have sampled our likelihood, we can build histograms on any parameters.

- Confidence intervals can be obtained:
 - 1) Sort bins according to their height

2) Retain higher bins until you reach the desired CL (e.g. 90%)3) The CL range is then given by the positions of the two farthest bins on left and right.

2. Uncertainty assessment

Correlation plots

- We can produce density plots on planes defined by any pair of parameters.
- We can define confidence contours in the same way.
- This is useful to visualize and detect degeneracies.

2. Uncertainty assessment

Fisher and covariance matrices

- A common misconception is that MCMC is the only way to obtain the uncertainties in our parameter estimates.
- If you get the best model from other algorithms (e.g. LM), the shape of the minimum is obtained by the Fisher matrix

$$F_{mn} = \sum_{i} \frac{1}{\sigma_i^2} \frac{\partial f(t_i; \mathbf{p})}{\partial p_m} \frac{\partial f(t_i; \mathbf{p})}{\partial p_n}$$

- The **covariance** matrix is just the inverse of the Fisher matrix $\operatorname{cov}_{mn} = (F^{-1})_{mn}$
- The variance of each parameter is read along the diagonal of this matrix.

Degeneracies in microlensing

- A degeneracy exists when the same data can be explained by many **different models** with the same likelihood.
- We can have **continuous** degeneracies (e.g. q/s)
- ... or **discrete** degeneracies (e.g. wide/close)
- Degeneracies can be "strong" i.e. inherent to gravitational lensing physics itself,
- ... or "accidental" if they arise only because of observational shortcomings (gaps, poor sampling, noise, systematics).

Discrete degeneracies

Close/Wide degeneracy in planets

S

- The central caustic is **invariant** under the transformation $_{S} \leftrightarrow -$
- All planetary perturbations due to the central caustic suffer from this degeneracy.

Discrete degeneracies

Close/Wide degeneracy in binaries

- The Chang & Refsdal caustic in the wide regime and the quadrupole caustic in the close regime are very similar.
- In addition, the four cusps of a Chang & Refsdal are equivalent (4 possible sub-cases).

Discrete degeneracies

- Han & Gaudi (2008) degeneracy
- Light curves with a double peak can be explained by a close approach to a Chang & Refsdal astroidal caustic
- ... or by the approach to the back of a central caustic in the planetary regime.

Discrete degeneracies

 Intermediate binary degeneracies
The intermediate binary caustic is very extended. Trajectories crossing different folds may lead to very similar light curves

Discrete degeneracies

 Satellite degeneracy Similarly to what happens for PSPL events, if we have observations from space, we have four options for the signs of u_{0,Earth} and u_{0,satellite}.

Continuous degeneracies

s/q degeneracy The size of an astroid caustic depends on the combinations

 $\frac{1}{s^2} \sqrt{\frac{q}{(1+q)^3}}$

Wide regime

0.04

0.03

0.02

0.01

0.00

$$s^2 \frac{q}{(1+q)^2}$$

 The mass ratio and separation are highly correlated and poorly known.

• X

Alternative parameterizations

- The **exploration** of continuous degeneracies is particularly **painful**.
 - We can rotate the box of the proposal distribution (easily achieved if we diagonalize the local Fisher matrix before starting the chain)

- Define the origin at the center of the caustic we wish to study.
- Fit the log of some parameters (s,q, ρ ,t_E).
- Use other combinations that are clearly established by the data (e.g. source crossing time t_{*}, time of caustic crossing, ...)

$$p_1 = \frac{1}{s^2} \sqrt{\frac{q}{(1+q)^3}}; \quad p_2 = s^2 \sqrt{\frac{q}{(1+q)^3}}$$

Cassan parameters

- Cassan (2008) proposed to use the curvilinear abscissa along the caustic.
- u₀, α, t₀, t_E are replaced by t_{entry}, s_{entry}, t_{exit}, s_{exit}.

Walking through degeneracies

- In general, distinct features in the lightcurve occurring at definite times (caustic crossing) couple the Einstein time to the (s,q) values.
- This mitigates the degeneracy between t_E and u₀ plaguing the PSPL.
- For the same reason, different models may predict very different t_E and thus very different **blending** ratios.
- Typically, planetary models mimicking binary models come at negative blending.
- Other hints may come from unlikely source radii or unlikely Einstein times.
- How do we quantify unlikeliness?

4. Bayesian analysis

Bayes' theorem

- For all parameters we can define an expected range of possible values.
- A **uniform prior** can be easily implemented by requiring that the proposal point is within the prior.
- However, we may wish to use the information coming from previous studies to decide which model is more likely (stellar luminosity and mass functions, spatial distributions and velocities)
- This information typically comes in the form of (prior) distributions.
- Bayes theorem states that the posterior probability is the product of the likelihood from the data with the prior expectations:

$$p(\mathbf{p} \mid y_i) = \frac{p(y_i \mid \mathbf{p})p(\mathbf{p})}{p(y_i)}$$

4. Bayesian analysis

Bayes in MCMC

$$p(\mathbf{p} | y_i) = \frac{p(y_i | \mathbf{p})p(\mathbf{p})}{p(y_i)}$$

- In our MCMC we just have to sample the product $\exp\left(-\frac{\chi^2}{2}\right)p(\mathbf{p})$
- The normalization p(y_i) cancels if we are only interested in relative posterior probabilities (ratios).
- Note that the priors may be distributions on combinations of the basic parameters (e.g. the mass of the lens).

4. Bayesian analysis

Priors in microlensing

- Microlensing events are normally occurring on source stars in the bulge lensed by stars in the disk/bulge.
- These objects follow some spatial distributions, mass, luminosity and velocity functions.
- In order to use Bayesian approach in microlensing we need a Galactic model.
- "Stochastic distributions of lens and source properties for observed galactic microlensing events", Dominik (2006).
- "A synthetic view on structure and evolution of the Milky Way", Robin et al. (2003) (Besançon model)
- "Stellar Contribution to the Galactic Bulge Microlensing Optical Depth", Han & Gould (2003)
- Another combination of models is in Bennett et al. (2008)
- **Blending** light gives a further constraint (see Beaulieu's talk).

Initial conditions

- Microlensing **parameter space** is huge and full with local χ^2 minima.
- If we start from an arbitrary initial condition we would seldom end in the global minimum.
- We need to **explore** all the relevant parameter space and make sure we find the true best model(s).
- Two ways:
 - Grid search
 - Template library

Grid search

- We may define a grid in the parameter space and start fits from all points.
- Many fits will just never converge
- Many fits will end up in the same minima.
- Many minima will be missed.

- A too coarse grid may miss possible candidate models.
- A too dense grid has many redundant or useless fits.

Two-steps grid search

- Inverse-ray-shooting codes may keep (s,q) fixed in a first search, so as to use the same magnification map.
- Once these preliminary models are found, we can run a full fit including (s,q).

 Codes for a full Bayesian approach along these lines are available (ML/MAP/BIC) (Kains et al. 2012)

Template libraries

- It would be much more efficient to start the fit from an initial condition that resembles our data.
- We need to build a **library of light curves** covering all possible **morphologies** (Di Stefano & Mao 1996, Night et al. 2005).
- The most systematic attempt has found 73 different morphologies out of 232 regions in the parameter space (Liebig et al. 2015)
- It was limited to equal-mass binaries!

Template libraries

 Light curves are classified according to the number and nature of their peaks (fold crossing, cusp approach, ...)

 Regions in the parameter space are identified after a scansion. (Liebig et al. 2015)

	Morphology Class	Close	Intermediate	Wide
I	С	outside caustics	outside caustics	outside caustics
		between caustics		between caustics
п	F-F	$[a_{ip1}a_{ip2}], [a_{is1}a_{is2}], [a_{bp1}a_{ip2}], [a_{is1}b_i], [a_{bp1}a_{ip1}]$	$[a_{i1}a_{i2}], [a_{b1}a_{i2}], [a_{i1}b_{i}], [a_{b1}b_{i}], [b_{b}b_{i}]$	$[a_{b1}b_{t1}], [b_{b1}b_{t1}]$
	cc	$B_{t1}B_{t2}, A_1B_{t1}, A_1C_{tp}, A_1C_{tx}, A_1B_{t2}, C_{tx}B_{t2}$	$B_{t1}B_{t2}, A_1B_{t1}$	$B_{t1}B_{t2}, A_1B_{t1}, B_{b1}D_1, B_{b1}B_{t2}$
	C-C	[A1A2]	[A ₁ A ₂]	-
	C-F	$[a_{is1}B_{i2}], [A_1a_{ip2}]$	$[a_{i1}B_{i2}], [A_1a_{i2}], [B_{b1}b_t], [A_1a_{i2}]$	$[B_{b1}b_{c1}]$
ш	ĊF-F	$\begin{array}{l} A_1[a_{ip1}a_{ip2}], A_1[a_{bp1}a_{ip2}], [a_{iz1}b_1]B_{i2}, A_1[a_{iz1}b_1], [a_{bp1}a_{ip2}]B_{i2}, \\ [a_{bp1}a_{ip1}]B_{i1}, [a_{ip1}a_{ip2}]B_{i2}, [a_{iz1}a_{ip2}]B_{i2}, [a_{bp1}a_{ip2}]B_{i2}, \\ [a_{bp1}a_{ip1}]C_{ip}, [a_{bp1}a_{ip1}]B_{i2} \end{array}$	$\begin{array}{l} A_1[a_{i1}a_{i2}], A_1[a_{b1}a_{i2}], [a_{i1}b_i]B_{i2}, A_1[a_{i1}b_i], [a_{b1}a_{i2}]B_{i2}, [a_{b1}b_i]B_{i2}, \\ B_{b1}[a_{b1}b_i], [a_{b1}a_{i1}]B_{i1}, [a_{i1}a_{i2}]B_{i2}, [a_{b1}b_i]B_{i2}, B_{b1}[b_bb_i] \end{array}$	$ \begin{array}{l} [a_{i1}b_{i1}]B_{i2}, A_1[a_{i1}b_{i1}], B_{b1}[a_{b1}b_{i1}], [a_{b1}a_{i1}]B_{i1}, [a_{b1}b_{i1}]B_{i2}, \\ B_{b1}[b_{b1}b_{i1}], A_1[b_{b1}b_{i1}], [a_{b1}b_{b1}]B_{i2} \end{array} $
	F-P-F	$[a_{i1}b_{i}a_{i2}], [a_{bp}a_{ip1}a_{ip2}]$	$[a_{l1}b_{l}a_{l2}], [a_{b1}a_{l1}a_{l2}], [a_{b1}a_{l1}b_{l}], [b_{b}a_{b1}b_{l}], [a_{b1}a_{l2}b_{l}], [a_{b1}b_{l}a_{l2}]$	$[a_{b1}a_{c1}b_{c1}], [a_{b1}b_{b1}b_{c1}]$
	CF-C	$[A_1a_{ip2}]A_2, C_{bp}[abp1C_{ip}]$	$[A_1a_{l2}]A_2, A_1[a_{l1}B_{l2}], [A_1b_1]B_{l2}$	[A ₁ b _{c1}]B _{c2}
	CCC	$B_{b1}A_1B_{c1}, A_1C_{cs}B_{c2}$	$B_{b1}A_1B_{c1}$	$B_{b1}A_1B_{c1}, B_{b1}D_1B_{c2}, A_1B_{c1}B_{c2}, B_{b1}A_1B_{c2}$
	C-F-F	-	$[A_1b_ta_{t2}]$	-
	C C-F	$A_1[C_{tx}b_t]$	-	-
IV	CF-FC	$\begin{array}{l} \Lambda_1[a_{ip1}a_{ip2}]A_2,\Lambda_1[a_{bp1}a_{ip2}]A_2,\Lambda_1[a_{is1}a_{is2}]B_2,B_{b1}[a_{bp1}a_{ip2}]B_{b2},\\ B_{b1}[a_{bp1}b_{ip1}]B_{11},C_{bp}[a_{bp1}a_{ip2}]C_{tp} \end{array}$	$\begin{array}{l} A_1[a_{i1}a_{i2}]b_2, A_1[a_{b1}a_{i2}]b_2, A_1[a_{i1}b_1]B_{i2}, A_1[a_{i1}a_{i2}]B_{i2}, \\ B_{b1}[a_{b1}a_{i2}]B_{i2}, B_{b1}[a_{b1}a_{i1}]B_{i1}, A_1[a_{b1}b_1]B_{i2}, B_{b1}[a_{b1}b_1]B_{i2} \end{array}$	$A_1[a_{t1}b_{t1}]B_{t2}, B_{b1}[b_{b1}b_{t1}]B_{t2}, B_{b1}[a_{b1}a_{t1}]B_{t1}, A_1[a_{b1}b_{t1}]B_{t2}$
	F.F.F.F	$[a_{t+1}b_t][b_ta_{t+2}], [a_{bp},a_{tp1}][a_{tp1}a_{tp2}], [a_{bp1}a_{tp1}][a_{t+1}b_t]$	$[a_{c1}b_{1} b_{c}a_{c2} , [a_{b1}a_{c1} a_{c1}a_{c2}], [a_{b1}a_{c1} a_{c1}b_{1} , [b_{b}a_{b1} a_{b1}b_{1}], [a_{b1}a_{c1} a_{c1}b_{c2} a_{c2}b_{c1} , [a_{b1}b_{c1} b_{c1}a_{c2}]$	$[a_{t1}b_{t1}][b_{t2}a_{t2}], [a_{b1}a_{t1}][a_{t1}b_{t1}], [a_{b1}b_{b1}][b_{b1}b_{t1}], [a_{b1}b_{b1}][b_{t2}a_{t2}]$
	C F-F-F	$[a_{bp1}a_{ip1}a_{ip2}]B_{i2},A_1[a_{ix1}a_{ix2}b_l]$	$ \begin{array}{l} [a_{b1}a_{t1}a_{t2}]B_{t2}, [a_{b1}a_{t1}b_{t}]B_{t2}, B_{b1}[a_{b1}a_{t1}b_{t}], A_{1}[a_{t1}b_{t}a_{t2}], \\ A_{1}[a_{b1}b_{t}a_{t2}], B_{b1}[a_{b1}a_{t2}b_{t}] \end{array} $	$B_{b1}[a_{b1}a_{c1}b_{c1}], [a_{b1}b_{b1}b_{c1}]B_{t2}$
	F-P-P-P	-	$[b_b a_{b1} a_{c1} b_t], [a_{b1} a_{c1} a_{c2} b_t], [b_b a_{b1} a_{c2} b_t]$	-
	C-FF-F	-	$[a_{b1}a_{t1}][a_{t1}B_{t2}], [A_1b_t][b_ta_{t2}]$	$[A_1b_{t1}][b_{t2}a_{t2}]$
	F-FCC	$[a_{bp} a_{tp}]C_{tp}B_{t2}, [a_{bp} a_{tp}]C_{tr}B_{t2}, \Lambda_1C_{tr}[a_{tr1}b_t], \Lambda_1C_{tr}[a_{tr2}b_t], [a_{bp} a_{tp}]C_{tr}B_{t1}$	-	$[a_{b1}b_{b1}]D_1B_{c2}$
	C-C C-C	-		$[A_1D_1][D_2A_2]$
	F-FC-F	$[a_{bp1}a_{ip1}][C_{isb_i}]$	-	-
	C-FCC	-	-	$[A_1b_{i1}]D_1B_{i2}$
	CF-CC	$C_{bp}[a_{bp1}C_{tp}]B_{t2}$	-	-

Matching a template to data

• **Peaks in the dataset** must be identified and ranked according to their prominence.

- The two most prominent peaks must be matched to the most prominent peaks in the template.
- We get (s,q,u₀,α,ρ) from the template.
 - (t₀,t_E) are obtained by the peak matching.
- If there is only one peak, the anomaly time can be taken as the position of the second peak.

RTModel

- RTModel (<u>http://www.fisica.unisa.it/GravitationAstrophysics/RTModel.htm</u>) is an **automatic platform** for real-time modeling.
- It takes data and anomaly alerts from ARTEMiS (<u>http://www.artemis-uk.org/</u>).
- It uses matching from a library of 244 templates.
- For each initial condition, the Levenberg-Marquardt fit is repeated five times using the bumpers method.
- The calculation of the magnification is done by VBBinaryLensing.
- All models found are ranked by their χ^2 .
- Duplicates are removed if they fall within the same covariance ellipsoid.
- Models are posted on a public webpage automatically.
- RTModel runs on a 8-core workstation taking 2 hours per event.

Outlook

- Higher order effects (parallax, orbital motion) may dramatically increase the number of light curve morphologies.
- Grid searches in too many dimensions are unfeasible.
- Template libraries require a long construction.
- Similar issues hold for triple and multiple lenses.
- In view of WFIRST, we need to improve our automatic modeling capabilities.
 pyLIMA, MulensModel