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The example of 51 Eri b with the Gemini Planet Imager

Images in multiple bands, Macintosh et al, 2015

How do we make blobs appear? How do we decide a blob might be a
planet?
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The example of 51 Eri b with the Gemini Planet Imager

Spectrum, Macintosh et al, 2015

How do we get a spectrum?
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The example of 51 Eri b with the Gemini Planet Imager

Orbit, mass?, De Rosa et al, 2015

4 De Rosa et al.

Figure 3. (left): One hundred randomly selected orbits for 51 Eri b from the Monte Carlo technique described in Section 4 consistent
with the astrometry. The color corresponds to the epoch of a given location along each orbital track, epochs later than 2055 are plotted
in black. The position of 51 Eri is indicated by the black star. The region plotted in the right hand side is indicated by the black square
(right): As the left panel, but focusing on the available astrometry. The color on the orbital tracks has been removed for clarity. The color
of the symbols are as in Figure 1, and the multiple GPI H-band epochs are labelled.

in the reduced GPI image of a given target, repeated for
each of the 44 stars observed as a part of GPIES at the
time of the discovery. There was a further correction
factor based on the proper motion constraints from the
2003 non-detection, as only 34% of the expected distri-
bution of field brown dwarfs had the motion required to
place the object behind the star in 2003. This correction
is not used here as the revised proper motion estimate
for the unbound brown dwarf scenario is 3-σ discrepant
from the proper motion of the star due to orbital mo-
tion (Figure 2). Instead, the volume calculation of the
cones was convolved with the distance posterior distri-
bution, lowering the posterior probability that 51 Eri b
is an unbound brown dwarf to 2 × 10−7.

4. ORBITAL ELEMENTS OF 51 ERI b

MCMC orbit fitting is slow to converge for sparsely
sampled astrometry or short orbital arcs, and so we im-
plemented a more computationally efficient Monte Carlo
method to generate plausible distributions of orbital pa-
rameters based on astrometry covering only a small frac-
tion of an orbital period. For four of the orbital pa-
rameters, a large number of samples were drawn from
appropriate probability distributions: uniform for argu-
ment of periastron (ω) and epoch of periastron passage
(T0), uniform in cos(i) for inclination angle (i), and ec-
centricity (e) following the linear fit to radial velocity
planets of Nielsen et al. (2008). Initial orbits were gen-
erated using these four parameter distributions and fixed
values of semimajor axis (a) and position angle of nodes
(Ω), the values of a was scaled and the value of Ω rotated
to reproduce the astrometry at the first epoch. Period
(P ) was not fit and was calculated assuming a stellar
mass of 1.75 M⊙ (Simon & Schaefer 2011). Astrometric
errors were incorporated into the generated parameters

by adding random offsets to the separation and position
angle of the first epoch before each orbit is shifted and
rotated. These uncertainties were randomly drawn from
Gaussian distributions equivalent to the first epoch as-
trometric uncertainties.

With multiple epochs, we proceeded to iteratively re-
ject sets of orbital parameters that do not match later
measurements, with acceptance probability given by a
two-dimensional Gaussian with the astrometric errors as
the standard deviations. Generated orbits that were clos-
est to the observed separation and position angle at the
corresponding observational epoch were more likely to be
accepted. We then obtained distributions of fitting or-
bital parameters given the input astrometry. Varying the
epoch chosen to initialize the procedure had little effect
on the distribution of accepted orbital parameters.

We validated this method by generating 103 orbits with
one fixed orbital parameter and randomly sampling the
other parameters, and then creating five epochs from one
year of simulated astrometry for each orbit, each with an
observational uncertainty. The spacing of the epochs and
astrometric errors were chosen to be the same as the mea-
surements of 51 Eri b. We then applied our method to the
artificial astrometry and examined the returned distribu-
tions of orbital parameters. Of the simulated orbits with
semimajor axis of 13 AU, the median was 13.3 AU, and
in 74% of orbits 13 AU was within the 68% confidence
interval of each individual orbital fit for semimajor axis.
This suggests the generated distributions are reasonable
representations of the posterior probability distributions,
and comparison with MCMC (described below) further
supports this. This procedure will be described further
in Blunt et al. (2015, in preparation).

This technique was applied to the astrometry of
51 Eri b. One hundred orbits from the fit are shown in

How do we carry out precise astrometric measurements?
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Outline

This talk

1 High-contrast image formation theory.

2 High-contrast data analysis.

3 Handling astrophysical noise.
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Fourier Transforms

Botton Line

Main sources of noise = whatever is at the telescope entrance, e.g.
atmospheric turbulence and imperfections on the optics.
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Fourier Transforms

Botton Line

Main sources of noise = whatever is at the telescope entrance, e.g.
atmospheric turbulence and imperfections on the optics.

In direct imaging data their Fourier Transform is the relevant quantity for
noise estimation. For long exposures we care about the Fourier Transform
of the auto-correlation of the errors at the telescope entrance averaged
over time.
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Fourier Transforms

Guyon (2005).

2. For a Shack-Hartmann WFS with noiseless quad cells:

!p ¼
1:48

fdsa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ dsa
r0

" #2
s

: ð33Þ

For both equations, fdsa % 1
3 (minimum of three lenslets per sine

wave period), as lower pupil plane sampling increases !p. For
example, with two lenslets per period, if the centers of lenslets
coincide with the crests and peaks of the sine wave phase ab-
erration, no signal will be produced by the SHWFS.

With an SHWFS, photometry of the spots can be used to mea-
sure amplitude variations in the pupil plane, without altering the
accuracy of the phase measurement: the sensitivity !p is main-
tained even if OPD and scintillation are measured simultaneously.

The PSF contrast componentC2 achievable with an SHWFS is
shown in Figure 3 for subaperture sizes ranging from 2 to 70 cm.
For each subaperture, a continuous noiseless detector was as-
sumed, rather than a less sensitive quad cell.

In the inner region of the PSF, the contrast C2 decreases as
the &17/9 power of angular separation (eqs. [32] and [20]). No
correction is possible beyond the sampling limit of the WFS:
the contrast C2 reaches a minimum value at this transition point.
The contrastC2 at small angular separations is independent of the
number of subapertures if the subaperture size is larger than the
seeing. However, if subapertures are smaller than r0, diffraction
by each subaperture increases the subaperture’s focal plane spot
size and therefore reduces the sensitivity of theWFS. It therefore
seems impossible to simultaneously optimize the contrast over a
wide range of separations.

To achieve the optimal performance shown in Figure 3, the
wave front integration time th needs to be proportional to "

&1/9.

4.2. Curvature Wave Front Sensor (CWFS)

In a curvature WFS (Roddier 1988; Roddier et al. 1991), a
spherical phase aberration is introduced in the focal plane, which
is equivalent, in the pupil plane, to Fresnel propagation. The
pupil image is therefore ‘‘conjugated’’ to an altitude that is set by
the amplitude of the focal plane phase aberration. Equation (9)
shows that Fresnel propagation of a pure sine wave phase ab-
erration produces both an amplitude and a phase aberration of
identical spatial frequency in the pupil plane. The curvatureWFS

therefore transforms phase aberrations into light intensity mod-
ulations in the pupil plane.

The WFS measures intensities Ik in the pupil plane. I assume
here that N such measurements are taken per spatial period:

Ik ¼
Nph

N
1þ 4#A sin (d$)

k
sin

2#k

N
þ $

" #$ %
; ð34Þ

with %Ik ¼ (Nph /N )1
=2.

Using the method detailed in Appendix A, the following ex-
pression for !p is obtained:

!p(" ) ¼ sin&1 # &z k"2

k2i

 !
; ð35Þ

where &z is the conjugation altitude of the pupil plane (in cur-
vature AO systems, two pupil plane images are usually acquired,
at conjugation altitudes +&z and&&z). This result is independent
of N for N > 2.

The PSF contrast component C2 achievable with a CWFS is
shown in Figure 4. The amount of defocus introduced in the focal
plane of the CWFS can be adjusted to tune its sensitivity to an
optimal spatial frequency in the pupil plane (for which the term
in the sine of eq. [35] is #/2).

In the inner regions of the PSF, the contrastC2 decreases as the
&29/9 power of the angular separation (eqs. [35] and [20]),
which is significantly steeper than for an SHWFS. This steep
increase of wave front error at low spatial frequencies is also
referred to as ‘‘noise propagation’’ and is known to be more
serious for a CWFS than for an SHWFS. Soon after the contrast
reaches a minimum, the defocus distance becomes too large (the
sine in eq. [35] becomes close to zero) and no reliable correction
can be applied to the wave front. Theoretically, correction of
higher spatial frequencies is possible as the sine in equation (35)
periodically oscillates between 1 and&1, but this possibility was
not considered in Figure 4: in a real CWFS, spectral bandwidth
and time evolution of &z (usually closer to a sine wave than a step
function) prevent this feature from being usable.

At small angular separations, thewave front integration time th
for a CWFS needs to be proportional to "&7/9 to achieve the
result shown in Figure 4. This suggests that a curvatureWFS can

Fig. 3.—PSF contrast componentC2 with Shack-HartmannWFS using various
subaperture sizes. The solid line shows the PSF contrast component C0 without
correction of the atmospheric turbulence. Parameters used for this simulation are
listed in Table 4.

Fig. 4.—PSF contrast component C2 obtained with a curvature WFS using
defocalization distances ranging from 25 to 1600 km. Parameters used for this
simulation are listed in Table 4.

LIMITS OF AO FOR HIGH-CONTRAST IMAGING 599

Botton Line

Main sources of noise = whatever is at the telescope entrance, e.g.
atmospheric turbulence and imperfections on the optics.

If we “broadly” know what they look like, we can predict what the images
will look like.
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Speckles: symmetries

Complex amplitude at the entrance of the coronagraph, assuming no time
variations:

ψ0(x) = BeamAmplitude(x)exp[iBeamDelay (x)]

ψ0(x) = [1 + εA(x)]exp[iεOPD(x)/λ ]

ψ0(x) ∼ 1 + εA(x) + iεOPD(x)/λ ∼ εA(x) + iεOPD(x)/λ

Beam shape (Amplitude) Beam delay (Phase)
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Speckles: symmetries

Complex amplitude at the entrance of the coronagraph, assuming no time
variations:

ψ0(x) = [1 + εA(x)]exp[iεOPD(x)/λ ]

ψ0(x) ∼ 1 + εA(x) + iεOPD(x)/λ ∼ εA(x) + iεOPD(x)/λ

Soummer et al. (2008).

With E(a(r)) ¼ 0, equation (2) implies E(!1(r))¼Aþ As(r).
Integrating this equation, we obtain

E

Z
!1(r)P(r) dr

! "
¼ Aþ

Z
As(r)P (r) dr; ð4Þ

and therefore,

Z
As(r)P(r) dr ¼ 0: ð5Þ

Assuming that the phase errors are stationary over the aperture, we
obtain

Z
a(r)P(r) dr % 0: ð6Þ

Note that the difference between equation (5) and equation (6)
comes from the fact that As (r) is deterministic and a(r) is ran-
dom.AlthoughAs(r) can be definedwith zeromean over the aper-
ture, each independent realization of a(r) does not necessarily
have an exactly zero average over the aperture.

The specific case of quasi-static aberrations is not considered
in this section andwill be treated in x 3.2. The three terms of equa-
tion (2) are illustrated in Figure 3. The length of the complex termA
is arbitrary in the figure, to illustrate that the modulus of A is not

unity and that the complex terms A, As, and a are defined according
to the definitions above.
In the first focal plane, a coronagraphic mask is applied at the

center of the image of the star. Writing the mask transmission as
1&M (r) allows us to accommodate any type of mask corona-
graph, including Lyot, APLC, band-limited, and phase masks.
For example, a classical hard-edged Lyot coronagraph (or APLC)
is described using a top-hat function for M. The complex ampli-
tude of the wave in the focal plane is given by a scaled Fourier
transform (FT) of this pupil amplitude (Goodman 1996),

!2(r) ¼ F !1(r)ð Þ 1&M (r)½ (; ð7Þ

where the symbol F denotes the scaled FT. For clarity, we omit
the wavelength-dependent scaling factors. For the complete chro-
matic formalism, see, for example, Aime et al. (2002), Soummer
et al. (2003a), and Aime (2005b). In the next pupil plane, the
complex amplitude before the Lyot stop P 0(r) is also the sum of
three terms,

!3(r) ¼A!c(r)þ!s(r)þ!a(r); ð8Þ

where!c(r) ¼ P(r)& P(r)F (M (r)) is the complex amplitude in
the Lyot stop plane for a perfect wave front (Soummer et al.
2003a). The two other terms !s(r) and !a(r) correspond to the
propagation of the terms As(r) and a(r), respectively. For example,

!a(r) ¼ a(r)P(r)& a(r)P(r) ) F M (r)ð Þ: ð9Þ

The perfect coronagraph term!c(r) and the term!a(r) are shown
in intensity in Figure 4. The coronagraphs reject most of the star-
light outside the image of the aperture in the Lyot plane for the
perfect part of the wave, but most of the energy remains inside the
aperture for the speckle part.
The Lyot stop is applied in this plane. In the case of an APLC,

the Lyot stop is identical to the entrance pupil; in all other cases, the
Lyot stop is undersized. With P(r)P 0(r) ¼ P 0(r) and with the no-
tations S(r) ¼ F (a (r)P 0(r)) and Ss(r) ¼ F (As(r)P 0(r)), we obtain
the complex amplitude in the final focal plane,

!4(r) ¼ A!d(r)þ Ss(r)& Ss(r)M (r)½ ( ) F P 0(r)ð Þ
þ S(r)& S(r)M (r)½ ( ) F P 0(r)ð Þ; ð10Þ

where !d denotes the focal wave amplitude of the coronagraph
in the perfect case, following the notations of Aime et al. (2002).
The convolution product S(r)M (r)½ ( ) F (P 0(r)) in equation (10)
has a negligible effect outside the mask area. Indeed, the spatial

Fig. 2.—PDFs of the pupil plane complex amplitude. Left: PDF of uncorrected atmospheric wave fronts obtained from a von Karman power-spectrummodel, with an
outer scale L0 ¼ 20 m and a seeing !0 ¼ 0:800. The phase excursion is uniform over 0Y2!, and the thickness of the annulus corresponds to the amplitude scintillation.Middle
and right: PDFs of AO-correctedwave fronts for a SR of 90% (middle) and 95% (right). These distributions in the complex plane look like decentered crescents. The length of
the crescent corresponds to the phase excursion, and the thickness corresponds to scintillation, which is assumed to have no effect on theAO system. The effect of the improved
AO correction on the phase excursion is obvious between these two figures. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 3.—Illustration of the decomposition of thewave front as the sumof three
complex vectors. We consider a static phase term ’s and a residual atmospheric
phase’.A is the meanwave front, and jAj2 is therefore the SR.As corresponds to the
static aberrations, and a corresponds to the zero-mean error term.

SOUMMER ET AL.644 Vol. 669
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Speckles: symmetries

Complex amplitude at the entrance of the coronagraph, assuming no time
variations:

ψ0(x) = [1 + εA(x)]exp[iεOPD(x)/λ ]

ψ0(x) ∼ 1 + εA(x) + iεOPD(x)/λ ∼ εA(x) + iεOPD(x)/λ

Soummer et al. (2008).

considering a perfect coronagraph in the presence of deterministic
static aberrations (and normalized to the SR). Even in the case of an
ideal coronagraph that cancels all the starlight for a perfect wave,
the deterministic term C̃(r) still contains the terms due to the static
aberrations and will contribute to speckle pinning, as discussed
below.

3. STATISTICAL PROPERTIES OF DIRECT
OR CORONAGRAPHIC IMAGES

3.1. Statistical Model and Properties of Speckles

3.1.1. Complex Amplitude Distribution

In this section we discuss the distribution of the complex am-
plitude in the focal plane.We consider the case of monochromatic
direct images for simplicity. The case of coronagraphic images is
formally identical to the coronagraphic case, according to the ap-
proximations described in the previous paragraph (eq. [12]). The
focal plane complex amplitude is the FT of the pupil plane com-
plex amplitude,

!2(r) ¼
Z

P(u) Aþ a(u)½ $e%2i!u = r du: ð13Þ

The complex amplitude in the focal plane is therefore a sum of
the random complex term a(r) weighted by the Fourier complex
phasors. At the center of the image, the Fourier phasors vanish,
so a special treatment for this particular case (and the transition
region around it) is necessary (Soummer & Ferrari 2007). Out-
side the central point of the image, the distribution of the com-
plex amplitude can be derived using known results in signal
processing, based on reasonable assumptions. We assume that
the complex amplitude in the pupil plane can be represented by
discrete values (an implicit assumption in any numerical simu-
lation) and that the correlation of the complex amplitude between
two points in the pupil plane decreaseswith distance between them.
Under these hypotheses, it can be shown that the distribution of the
complex amplitude in the focal plane is asymptotically circular
Gaussian (Brillinger 1981). We remind the reader here that if the
real and imaginary parts of a complex number z are Gaussian, its
distribution is said to beGaussian. If the real and imaginary parts are
independent and have the same variance, the distribution is said to
be circular Gaussian and is denoted z (N c(0;"2 ). See Figure 2 of
Aime & Soummer (2004a) for an illustration of the focal plane
PDFs. The circularity of the Gaussian distribution is due to the
Fourier phasors mixing the complex amplitudes in the complex
plane in the Fourier integral from equation (13), where u varies

between %D /2 and D /2. For positions r in the focal plane such
as r > k /D, the Fourier phase term therefore varies between 0 and
2!, and this circularization occurs. The complex amplitude of the
wave in the focal plane !4(r) follows a circular Gaussian law,
decentered by the mean of the amplitude C̃(r) and denoted
!4(r) (N c(C̃(r);E(jS(r)j2)).
In Figure 6 we give an illustration of the distribution of the

complex amplitude in the four successive planes of the coro-
nagraph. This illustration is based on numerical simulations of a
perfect APLC coronagraph and of an ExAO system. In the first
pupil plane, we have a decentered crescent (see Fig. 2). In the
first focal plane, in this example at the top of an Airy ring, C(r)
has a high absolute value, and the distribution is Gaussian, de-
centered by this amount. Detailed illustrations of the decentered
Gaussian statistics as a function of the position in the field can be
found in Aime& Soummer (2004a). In the following Lyot plane,
the coronagraph almost completely removes the perfect part of
the wave (see Fig. 4), and the resulting distribution is similar
to the initial distribution of the complex amplitude in the pupil,
but centered at the origin. Finally in the last focal plane without
static aberrations, C̃(r) ’ 0, as !d ’ 0, and the result is a cen-
tered circular Gaussian distribution.

3.1.2. Intensity Distribution

In this section we derive the PDF of the intensity from that of
the wave complex amplitude. Our problem is formally equiva-
lent to the case of laser speckles added to a coherent background,
which has been studied extensively (Goodman 1975, 2007), in
particular in the context of holography. We introduce the two
intensity terms

Ic ¼ C̃(r)
!! !!2;

Is ¼ E(jS(r)j2): ð14Þ

Note that Ic and Is are both functions of r and that Ic can describe
both the direct or coronagraphic case, with and without static
aberrations. Following Goodman, the joint PDF for the intensity
and phase can be obtained from the PDF of the complex ampli-
tude, using the simple Cartesian-polar change of variables (# ¼ffiffi
I

p
cos $; % ¼

ffiffi
I

p
sin $ ), where the modulus of the Jacobian of

this transformation is k J k¼ 1/2, and integrating the phase $ to
find the PDF for the intensity.
An alternative derivation of the PDF for the intensity is to

consider the properties of Gaussian distributions. As discussed in
x 3.1.1, the speckle term S(r) is a circular Gaussian distribution

Fig. 6.—Complex probability distributions in the four successive coronagraphic planes (pupil, focal, pupil, focal), at an arbitrary angular position in the field (r¼ 2:6k /D).
This simulation corresponds to the case of an APLC without static aberrations. The distribution in the pupil plane corresponds to a typical ExAO for an 8 m class telescope
delivering 90% SR and including scintillation effects. In the focal plane, the distribution at a given position is a decentered Gaussian distribution. In the Lyot stop plane of an
APLC, the coronagraph has removed the deterministic part of the entrance pupil wave front. In the final focal plane, the distribution is close to a circular Gaussian distribution.
[See the electronic edition of the Journal for a color version of this figure.]

SOUMMER ET AL.646 Vol. 669
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Speckles: symmetries

Complex amplitude at the entrance of the coronagraph, assuming no time
variations:

ψ0(x) = [1 + εA(x)]exp[iεOPD(x)/λ ]

ψ0(x) ∼ 1 + εA(x) + iεOPD(x)/λ ∼ εA(x) + iεOPD(x)/λ

ψ0(x) ∼ ε cos(
2π

D
nx+ φ) and

∫
duψ0(u)ψ0(u+ f)? ∼ ε cos(

2π

D
nf + φ)

Pueyo et al. (2009).
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Speckles: symmetries

Complex amplitude at the entrance of the coronagraph, assuming no time
variations:

ψ0(x) = [1 + εA(x)]exp[iεOPD(x)/λ ]

ψ0(x) ∼ 1 + εA(x) + iεOPD(x)/λ ∼ εA(x) + iεOPD(x)/λ

ψ0(x) ∼ iε cos(
2π

D
nx+ φ) and

∫
duψ0(u)ψ0(u+ f)? ∼ iε cos(

2π

D
nf + φ)

Pueyo et al. (2009).
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Speckles: symmetries

Complex amplitude at the entrance of the coronagraph, assuming no time
variations:

ψ0(x) = [1 + εA(x)]exp[iεOPD(x)/λ ]

ψ0(x) ∼ 1 + εA(x) + iεOPD(x)/λ ∼ εA(x) + iεOPD(x)/λ

Pueyo et al. (2009).
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Speckles: symmetries

Complex amplitude at the entrance of the coronagraph, assuming no time
variations:

ψ0(x) = [1 + εA(x)]exp[iεOPD(x)/λ ]

ψ0(x) ∼ 1 + εA(x) + iεOPD(x)/λ ∼ εA(x) + iεOPD(x)/λ

Pueyo and Norman (2013).
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Speckles: Temporal evolution

Hinkley et al. (2007).– 20 –

Fig. 4.— Temporal autocorrelation functions for three different pixel positions located at

0.19′′ (solid line), 0.10′′ (dashed line), and .23′′ (dotted line) from the star in the image

plane. Each of the autocorrelation functions are characterized by two distinct time scales,

here defined as the half-width of the two regions separated by the break near 20s. Each of the

three functions have a nearly identical τshort, but three distinct τlong values. The time axis is

shown in a log scale to better illustrate the shorter timescale, τshort. This shorter timescale

corresponds to a quick decorrelation of the speckles and the corresponding improvement in

the dynamic range can be seen in the earliest parts of the curves in Figure 2. The longer

timescale, τlong gives a measure of the lifetime of the quasi-static component to the speckle

noise.

Quick derivation of the respective influence of

atmospheric and “quasi-static” (e.g. from

telescope/instrument optics) speckles.

ψ0(x) = [εAtm(t) + εTel (t)]cos(
2π

D
nx+ φ)

S(f) =
∫

du< ψ0(u)ψ0(u+ f)? >Texp

∼
[
σ

2
Atm + 2 < εAtm,εTel >Texp +...

...+ < εTel ,εTel >Texp

]
cos(

2π

D
nf + φ)

Rigorous derivation in Perrin et al. (2005).
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Speckles: Temporal evolution
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Speckles: Temporal evolution

Bailey et al. (2016).

Figure 8: Comparison of RMS bandwidth error reconstructed from AO telemetry and a raw IFS image over the
corresponding field of view. The coronagraph causes the dark region at the center of the PSF. In the bandwidth
error-dominated regime, the PSF intensity should scale as the square of the RMS WFE in the corresponding
Fourier mode. In fact we see good qualitative correspondence.
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Figure 9: Comparison of actual to predicted raw contrasts (log scaled) for 0.25”, 0.4”, and 0.8”. need new figure
with readable axes. Preferably in PDF format.

map with higher gains. Figures 10 and 11 show the gain change, WFE change, and IFS images for one pair of
low/high gain tests. The high gain map was calculated using the o✏ine gain optimizer code with a gain cap of
0.5, from telemetry saved during the uniform 0.3 gain tests. As anticipated, the WFE improved in the region
with higher gains; the largest improvements were in low spatial frequencies along the wind direction. The IFS
image contrast also improved, and the percent change in IFS flux was approximately equal to the square of the
percent change in WFE, as anticipated for AO speckle-dominated regions of the PSF. These tests show that,
until GPI has a proper measurement of centroid gain, we should consider increasing the gain cap on the realtime
gain optimizer, particularly at 500 Hz loop speed.

5. CONCLUSIONS

The GPIES campaign has observed more than 300 stars in 1.5 yr, and these science and AO data provide a wealth
of information about the performance of the AO system. Considerable e↵ort has been invested in automated and
semi-automated data reduction pipelines for both science data and AO telemetry, greatly facilitating performance
data mining. As a result, we know that GPI AO is consistently achieving 10�4 contrast at 0.4” in single 60 sec
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Figure 4: Final H-band contrast vs. mean raw contrast (assuming a conservative, L-type planet spectrum for
the SDI reduction). Points are color-coded by the guide star magnitude.

Figure 5: Reconstructed AO bandwidth error vs. several seeing parameters reported by the DIMM and MASS.
Black points are at 1 kHz AO frame rate, while the blue diamonds are at 500 Hz. Green trendline shows the
expected power law dependence ⌧ .

WFE in a given mode can be directly mapped to the PSF. Figure 8 shows one such example. Qualitatively,
the morphology of the PSF is well-matched by the reconstructed WFE. Such comparisons not only verify our
understanding of the process of WFE reconstruction, but can guide future targeted e↵orts for PSF improvement,
and may potentially inform PSF subtraction. More thorough studies of PSF reconstruction from AO telemetry
are left to future work.

Key temporal properties of speckles

The atmosphere creates speckles, but they average out into a broad halo.

Adaptive Optics performances dictates the shape of this “average halo”.

The telescope+instrument speckles are pinned to the AO response.

The telescope+instrument speckles have timescales ranging from exposure
time to observing sequence.
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Key morphological properties of speckles

Speckles look like planets.

Speckles are symmetric (except when they are not).

Speckles stretch with wavelength (except when they are not).
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Key morphological properties of speckles

Speckles look like planets.

Speckles are symmetric (except when they are not).

Speckles stretch with wavelength (except when they are not).
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28 

In the case of a relatively stable space-based coronagraphic system like AFTA operating at ~10-9 
raw contrasts with sub-nanometer wavefront control the remaining speckles result from a complex 
mixture of phase and amplitude errors with different wavelength-dependent behaviors depending 
on how they were generated (e.g., phase-induced amplitude errors, DM residual print-through 
phase errors, etc.). The corresponding speckle fields therefore change rapidly over wavelength, 
hence the “boiling” (in the absence of wavefront control the phase-dominated speckle fields would 
appear to grow with wavelength). In addition, techniques like PIAACMC and HLC, which utilized 
strongly wavelength-dependent phase modifications at the focal plane, introduce further 
wavelength-dependent speckle variations. The application of SDI methods as they are use on 
ground-based telescope data on speckle fields like those shown here for AFTA will not work as 
the speckles have little wavelength correlation, as shown in Fig. 26. 
 

 
Fig. 26 - Revised HLC contrast versus wavelength evaluated and optimized for the X polarization channel (no jitter). 

 

6 Phase induced amplitude apodization complex mask coronagraph (PIAACMC) 

6.1 PIAACMC overview 

The PIAACMC combines the nearly lossless beam apodization of a classical PIAA35 coronagraph 

with a focal plane phase mask. A PIAA coronagraph relies on a pair of optics: the first (M1) 
compresses the beam into the desired pupil apodization profile and the second (M2) corrects for 
path length errors introduced by the remapping. After propagation to an intermediate focus the 
resulting PSF has a broadened core containing most of the light and significantly reduced wings. 
In the classical PIAA an opaque occulting spot is used to block the bulk of the starlight residing in 
the core, providing a high contrast field. The wavefront remapping results in a significant off-axis 
comatic distortion of the field PSF, so a reverse set of PIAA optics undistorts the wavefront, 
providing a sharp final PSF. The advantages of PIAA are a small IWA (a result of the 
magnification from the remapping) and high throughput (the apodization is done via beam 
reshaping rather than altering the transmission pattern with an absorbing mask). The classical 
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Key morphological properties of speckles

Speckles look like planets.

Speckles are symmetric (except when they are not).

Speckles stretch with wavelength (except when they are not).



Key questions Image Formation Data Analysis Astrophysical Noise Recap

Speckles: statistics

Soummer et al. (2008)

considering a perfect coronagraph in the presence of deterministic
static aberrations (and normalized to the SR). Even in the case of an
ideal coronagraph that cancels all the starlight for a perfect wave,
the deterministic term C̃(r) still contains the terms due to the static
aberrations and will contribute to speckle pinning, as discussed
below.

3. STATISTICAL PROPERTIES OF DIRECT
OR CORONAGRAPHIC IMAGES

3.1. Statistical Model and Properties of Speckles

3.1.1. Complex Amplitude Distribution

In this section we discuss the distribution of the complex am-
plitude in the focal plane.We consider the case of monochromatic
direct images for simplicity. The case of coronagraphic images is
formally identical to the coronagraphic case, according to the ap-
proximations described in the previous paragraph (eq. [12]). The
focal plane complex amplitude is the FT of the pupil plane com-
plex amplitude,

!2(r) ¼
Z

P(u) Aþ a(u)½ $e%2i!u = r du: ð13Þ

The complex amplitude in the focal plane is therefore a sum of
the random complex term a(r) weighted by the Fourier complex
phasors. At the center of the image, the Fourier phasors vanish,
so a special treatment for this particular case (and the transition
region around it) is necessary (Soummer & Ferrari 2007). Out-
side the central point of the image, the distribution of the com-
plex amplitude can be derived using known results in signal
processing, based on reasonable assumptions. We assume that
the complex amplitude in the pupil plane can be represented by
discrete values (an implicit assumption in any numerical simu-
lation) and that the correlation of the complex amplitude between
two points in the pupil plane decreaseswith distance between them.
Under these hypotheses, it can be shown that the distribution of the
complex amplitude in the focal plane is asymptotically circular
Gaussian (Brillinger 1981). We remind the reader here that if the
real and imaginary parts of a complex number z are Gaussian, its
distribution is said to beGaussian. If the real and imaginary parts are
independent and have the same variance, the distribution is said to
be circular Gaussian and is denoted z (N c(0;"2 ). See Figure 2 of
Aime & Soummer (2004a) for an illustration of the focal plane
PDFs. The circularity of the Gaussian distribution is due to the
Fourier phasors mixing the complex amplitudes in the complex
plane in the Fourier integral from equation (13), where u varies

between %D /2 and D /2. For positions r in the focal plane such
as r > k /D, the Fourier phase term therefore varies between 0 and
2!, and this circularization occurs. The complex amplitude of the
wave in the focal plane !4(r) follows a circular Gaussian law,
decentered by the mean of the amplitude C̃(r) and denoted
!4(r) (N c(C̃(r);E(jS(r)j2)).
In Figure 6 we give an illustration of the distribution of the

complex amplitude in the four successive planes of the coro-
nagraph. This illustration is based on numerical simulations of a
perfect APLC coronagraph and of an ExAO system. In the first
pupil plane, we have a decentered crescent (see Fig. 2). In the
first focal plane, in this example at the top of an Airy ring, C(r)
has a high absolute value, and the distribution is Gaussian, de-
centered by this amount. Detailed illustrations of the decentered
Gaussian statistics as a function of the position in the field can be
found in Aime& Soummer (2004a). In the following Lyot plane,
the coronagraph almost completely removes the perfect part of
the wave (see Fig. 4), and the resulting distribution is similar
to the initial distribution of the complex amplitude in the pupil,
but centered at the origin. Finally in the last focal plane without
static aberrations, C̃(r) ’ 0, as !d ’ 0, and the result is a cen-
tered circular Gaussian distribution.

3.1.2. Intensity Distribution

In this section we derive the PDF of the intensity from that of
the wave complex amplitude. Our problem is formally equiva-
lent to the case of laser speckles added to a coherent background,
which has been studied extensively (Goodman 1975, 2007), in
particular in the context of holography. We introduce the two
intensity terms

Ic ¼ C̃(r)
!! !!2;

Is ¼ E(jS(r)j2): ð14Þ

Note that Ic and Is are both functions of r and that Ic can describe
both the direct or coronagraphic case, with and without static
aberrations. Following Goodman, the joint PDF for the intensity
and phase can be obtained from the PDF of the complex ampli-
tude, using the simple Cartesian-polar change of variables (# ¼ffiffi
I

p
cos $; % ¼

ffiffi
I

p
sin $ ), where the modulus of the Jacobian of

this transformation is k J k¼ 1/2, and integrating the phase $ to
find the PDF for the intensity.
An alternative derivation of the PDF for the intensity is to

consider the properties of Gaussian distributions. As discussed in
x 3.1.1, the speckle term S(r) is a circular Gaussian distribution

Fig. 6.—Complex probability distributions in the four successive coronagraphic planes (pupil, focal, pupil, focal), at an arbitrary angular position in the field (r¼ 2:6k /D).
This simulation corresponds to the case of an APLC without static aberrations. The distribution in the pupil plane corresponds to a typical ExAO for an 8 m class telescope
delivering 90% SR and including scintillation effects. In the focal plane, the distribution at a given position is a decentered Gaussian distribution. In the Lyot stop plane of an
APLC, the coronagraph has removed the deterministic part of the entrance pupil wave front. In the final focal plane, the distribution is close to a circular Gaussian distribution.
[See the electronic edition of the Journal for a color version of this figure.]
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S(r)!N c(0; Is). The instantaneous intensity corresponding to the
complex amplitude of equation (12) is simply

I ¼ S(r)þ C̃(r)
!! !!2

¼ Re C̃(r)þ S(r)
" #$ %2þ Im C̃(r)þ S(r)

" #$ %2
; ð15Þ

where Re and Im denote the real and imaginary parts. Using the
properties of circularGaussian distributions, Re½C̃(r) þ S(r)' and
Im ½C̃(r)þ S(r)' are independent Gaussian random variables of
the same variance Is /2. We can rewrite the intensity with real and
imaginary terms of variance unity,

I ¼ Is
2

 
Re

ffiffiffiffiffiffiffiffiffi
2I(1

s

q
C̃(r)þ S(r)

h in o2

þ Im
ffiffiffiffiffiffiffiffiffi
2I(1

s

q
C̃(r)þ S(r)

h in o2
!
¼ Is

2
Ĩ ; ð16Þ

where Var Re
ffiffiffiffiffiffiffiffiffi
2I(1

s

p
C̃(r)þ S(r)

' (" #
¼Var Im

ffiffiffiffiffiffiffiffiffi
2I(1

s

p
C̃(r) þ

'"

S(r)Þ' ¼ 1.
The random variable Ĩ follows a decentered !2 with two de-

grees of freedom,!2
2(m), with a decentering parameterm ¼ 2I(1

s Ic
(Johnson et al. 1995, p. 433). The PDF for Ĩ is therefore

P(v) ¼ 2(1e((mþv)=2f1
1

4
mv

) *
; v > 0; ð17Þ

where f q(z) is the regularized confluent hypergeometric function
and 0F1(; q; z) is the confluent hypergeometric function defined as

fq(z) ¼
X1

n¼0

1

!(qþ n)n!
zn ¼ 0F1(; q; z)

!(q)
: ð18Þ

Finally, the PDF of the intensity I ¼ Is /2Ĩ is

pI (I ) ¼
e( IcþIð Þ=Is

Is
0 F1 ; 1;

IcI

I2s

) *
: ð19Þ

This expression is equivalent2 to the ‘‘modifiedRician distribution’’
derived byGoodman (1975) and used byCagigal&Canales (1998,
2000) and Canales & Cagigal (1999, 2001):

pI (I ) ¼
1

Is
exp ( I þ Ic

Is

) *
I0

2
ffiffi
I

p ffiffiffiffi
Ic

p

Is

) *
; ð20Þ

where I0 denotes the zeroth-order modified Bessel function of the
first kind. The Rician distribution is illustrated in Figure 7. A com-
parison between the Rician model and simulation data is presented
in x 3.1.4.

An interesting particular case is when the background C̃(r) is
zero and only the speckle term is present. Making Ic ¼ 0 in equa-
tion (20) (this happens at the zeros of the perfect PSF or using a
perfect coronagraph), the PDF reduces to

pI (I ) ¼
1

Is
exp ( I

Is

) *
: ð21Þ

This PDF corresponds to the well-known negative exponential
density for a fully developed speckle pattern (e.g., laser speckle
pattern; Goodman 2000). Finally, the distribution at photon
counting levels can be obtained by performing a Poisson-Mandel
transformation of the high-flux PDF in equation (20). An analytical
expression of this PDF has been given in Aime & Soummer
(2004b).

The mean and variance of the intensity can be obtained by sev-
eral ways. A first method (Goodman 1975, 2000) is to express the
mean intensityE(I ) and the second-order moment of the intensity
E (I2) as functions of C(r) and S(r). The second-ordermoment for
the intensity is the fourth-order moment for the complex ampli-
tude,E (I2) ¼ E((C þ S )(C ) þ S )))2 (omitting the variables r for
clarity), which can be simplified using the properties of Gaussian
distributions. With E(SS)SS)) ¼ 2E(SS))E(SS)) ¼ 2I 2s we ob-
tain E(I 2) ¼ I 2c þ 4I c Is þ 2I 2s . A second method is to derive a
general analytical expression for the moments of the Rician dis-
tribution. This can be obtained either from the definition of the
moments of equation (20) (Goodman 1975) or by computing the
derivatives of the moment-generating function (Aime & Soummer
2004b). The instantaneous intensity in the focal plane (eq. [15])
can be written as

I ¼ jC(r)j2 þ jS(r)j2 þ 2Re½C )(r)S(r)': ð22Þ

Since E(S(r))) ¼ E(S(r))) ¼ 0 (circular Gaussian distribution),
the mean intensity is simply the sum of the deterministic dif-
fraction pattern with a halo produced by the average of the
speckles, Ic þ Is or Ĩc þ Is, respectively, for direct and corona-
graphic images. The variance also finds a simple analytical ex-
pression, and we have

E(I ) ¼ Is þ Ic;

"2
I ¼ I2s þ 2IsIc: ð23Þ

The variance associated with photodetection can be added to this
expression to obtain the total variance "2 ¼ "2

I þ "2
P , where "

2
P

is the variance associated with the Poisson statistics, "2
P ¼ Ic þ

Is. The total variance is therefore

"2 ¼ I2s þ 2IsIc þ Ic þ Is: ð24Þ

In the case of direct images, the term Ic corresponds to the per-
fect PSF scaled to the SR. In the case of coronagraphic im-
ages, the focal plane intensity is not invariant by translation, and
therefore, it is technically not a true PSF. However, we use the
term ‘‘coronagraphic PSF’’ for simplicity and to follow the gen-
eral usage in the community. The term Is ¼ E(jS(r)j2) is a func-
tion of the radial distance r, which can describe an actual AO
halo. These PSFs and halo structures have been studied analyt-
ically (Moffat 1969; Racine 1996; Racine et al. 1999). It is also
possible to determine the halo profile directly from numerical
simulations, and an illustration of Ic and Is is shown in Figure 8.
The long-exposure PSF profile is the sum of these two contri-
butions; the halo clearing effect for higher SRs (Sivaramakrishnan
et al. 2001) is clearly visible between the two illustrations. The
shape of the halo is due to the spatially filtered wave front sensor
(Poyneer & Macintosh 2004) used in this simulation.

In Figure 9 we show the effect of a coronagraph on the Ic term,
while the Is term is left unmodified as explained in x 2. In this
figure we only consider one of the previous twoAO cases. In this
example, the coronagraph is good enough to render the constant

2 The Mathematica software (Wolfram 1999) can be used to derive these ex-
pressions, and the equivalence between eqs. (19) and (20) can be verified easily using
the functions Simplify and FunctionExpand.

DYNAMIC RANGE IN CORONAGRAPHIC IMAGES 647No. 1, 2007
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Fig. 7.—PDF of the light intensity at three different positions in the focal plane, corresponding to different amplitudes C(r) (or intensity levels Ic). The width of the
distribution clearly increaseswith an increase in the level of the constant intensity background. This approach provides an alternative explanation of speckle pinning, where the
constant background corresponding to the perfect part of the wave amplifies speckle fluctuations. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 8.—Numerical simulation to illustrate the decomposition of the mean
intensity PSF into two components Ic and Is for two SRs 90% (V ¼ 8) and 95%
(V ¼ 4) for a direct, noncoronagraphic image. The Is term corresponds to the
mean speckle halo, and the Ic term corresponds to the perfect PSF, scaled to the
SR, so that the total intensity remains normalized (the difference between the two
Ic profiles is neglected here in log scale). The simulation is made with PAOLA.
[See the electronic edition of the Journal for a color version of this figure.]

Fig. 9.—Effect of a coronagraph on the Ic term while the Is term is assumed
unmodified (x 2).We only consider one case of AO in this figure (SR ¼ 95%) and
illustrate the Ic term for the direct and coronagraphic cases. The effect of the APLC
coronagraph here is to reduce the perfect PSF below the speckle halo. The corre-
sponding long exposure image is totally dominated by the halo, and no residual
ringing remains. [See the electronic edition of the Journal for a color version of this
figure.]
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considering a perfect coronagraph in the presence of deterministic
static aberrations (and normalized to the SR). Even in the case of an
ideal coronagraph that cancels all the starlight for a perfect wave,
the deterministic term C̃(r) still contains the terms due to the static
aberrations and will contribute to speckle pinning, as discussed
below.

3. STATISTICAL PROPERTIES OF DIRECT
OR CORONAGRAPHIC IMAGES

3.1. Statistical Model and Properties of Speckles

3.1.1. Complex Amplitude Distribution

In this section we discuss the distribution of the complex am-
plitude in the focal plane.We consider the case of monochromatic
direct images for simplicity. The case of coronagraphic images is
formally identical to the coronagraphic case, according to the ap-
proximations described in the previous paragraph (eq. [12]). The
focal plane complex amplitude is the FT of the pupil plane com-
plex amplitude,

!2(r) ¼
Z

P(u) Aþ a(u)½ $e%2i!u = r du: ð13Þ

The complex amplitude in the focal plane is therefore a sum of
the random complex term a(r) weighted by the Fourier complex
phasors. At the center of the image, the Fourier phasors vanish,
so a special treatment for this particular case (and the transition
region around it) is necessary (Soummer & Ferrari 2007). Out-
side the central point of the image, the distribution of the com-
plex amplitude can be derived using known results in signal
processing, based on reasonable assumptions. We assume that
the complex amplitude in the pupil plane can be represented by
discrete values (an implicit assumption in any numerical simu-
lation) and that the correlation of the complex amplitude between
two points in the pupil plane decreaseswith distance between them.
Under these hypotheses, it can be shown that the distribution of the
complex amplitude in the focal plane is asymptotically circular
Gaussian (Brillinger 1981). We remind the reader here that if the
real and imaginary parts of a complex number z are Gaussian, its
distribution is said to beGaussian. If the real and imaginary parts are
independent and have the same variance, the distribution is said to
be circular Gaussian and is denoted z (N c(0;"2 ). See Figure 2 of
Aime & Soummer (2004a) for an illustration of the focal plane
PDFs. The circularity of the Gaussian distribution is due to the
Fourier phasors mixing the complex amplitudes in the complex
plane in the Fourier integral from equation (13), where u varies

between %D /2 and D /2. For positions r in the focal plane such
as r > k /D, the Fourier phase term therefore varies between 0 and
2!, and this circularization occurs. The complex amplitude of the
wave in the focal plane !4(r) follows a circular Gaussian law,
decentered by the mean of the amplitude C̃(r) and denoted
!4(r) (N c(C̃(r);E(jS(r)j2)).
In Figure 6 we give an illustration of the distribution of the

complex amplitude in the four successive planes of the coro-
nagraph. This illustration is based on numerical simulations of a
perfect APLC coronagraph and of an ExAO system. In the first
pupil plane, we have a decentered crescent (see Fig. 2). In the
first focal plane, in this example at the top of an Airy ring, C(r)
has a high absolute value, and the distribution is Gaussian, de-
centered by this amount. Detailed illustrations of the decentered
Gaussian statistics as a function of the position in the field can be
found in Aime& Soummer (2004a). In the following Lyot plane,
the coronagraph almost completely removes the perfect part of
the wave (see Fig. 4), and the resulting distribution is similar
to the initial distribution of the complex amplitude in the pupil,
but centered at the origin. Finally in the last focal plane without
static aberrations, C̃(r) ’ 0, as !d ’ 0, and the result is a cen-
tered circular Gaussian distribution.

3.1.2. Intensity Distribution

In this section we derive the PDF of the intensity from that of
the wave complex amplitude. Our problem is formally equiva-
lent to the case of laser speckles added to a coherent background,
which has been studied extensively (Goodman 1975, 2007), in
particular in the context of holography. We introduce the two
intensity terms

Ic ¼ C̃(r)
!! !!2;

Is ¼ E(jS(r)j2): ð14Þ

Note that Ic and Is are both functions of r and that Ic can describe
both the direct or coronagraphic case, with and without static
aberrations. Following Goodman, the joint PDF for the intensity
and phase can be obtained from the PDF of the complex ampli-
tude, using the simple Cartesian-polar change of variables (# ¼ffiffi
I

p
cos $; % ¼

ffiffi
I

p
sin $ ), where the modulus of the Jacobian of

this transformation is k J k¼ 1/2, and integrating the phase $ to
find the PDF for the intensity.
An alternative derivation of the PDF for the intensity is to

consider the properties of Gaussian distributions. As discussed in
x 3.1.1, the speckle term S(r) is a circular Gaussian distribution

Fig. 6.—Complex probability distributions in the four successive coronagraphic planes (pupil, focal, pupil, focal), at an arbitrary angular position in the field (r¼ 2:6k /D).
This simulation corresponds to the case of an APLC without static aberrations. The distribution in the pupil plane corresponds to a typical ExAO for an 8 m class telescope
delivering 90% SR and including scintillation effects. In the focal plane, the distribution at a given position is a decentered Gaussian distribution. In the Lyot stop plane of an
APLC, the coronagraph has removed the deterministic part of the entrance pupil wave front. In the final focal plane, the distribution is close to a circular Gaussian distribution.
[See the electronic edition of the Journal for a color version of this figure.]
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Key statistical properties of speckles

Speckles follow a Modified Rician distribution (long positive tail).

Second order moment depends on angular separation and on how well the
coronagraph works.
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Airing of grievances

Key annoying properties of speckles

Speckles look like planets.

Speckles follow a Modified Rician distribution (long positive tail).

Second order moment depends on angular separation, on how well the
coronagraph works and how well the atmosphere averages out.

The telescope+instrument speckles have timescales ranging from exposure
time to length of an observing sequence.

The most successful method to analyze direct imaging data so far has
been to build an empirical model of the noise based on the data itself.
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The problem(s)

Assume you have an image in which you are looking for a planet.

T (n) = Iψ0 (n) + εA(n).

We call ψ the random state of the telescope+instrument at the exposure.

The problem we want to solve is to figure out what are the relative
contributions of the light diffracted within the instrument and of an
hypothetical astrophysical signal.

Solutions

We can have a really good model of our instrument.

We “construct” a really good model of our instrument based on its data
history (science frames+telemetry).

We get more realizations of Iψ for which we are sure that there is no
astrophysical signal. We subtract them from T .
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Observing strategies

How to get more realizations of the instrument response?

Take images of other sources.

εA(n)? = Iψ0 (n)− Iψ1 (n)

What to watch for:

The telescope + instrument must be
very stable.

The alignment of the images needs to
be very precise (the star needs to be on
the same fraction of a pixel).
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Observing strategies

How to get more realizations of the instrument response?

Take images of other sources.

Take images at other wavelengths/telescope orientations.

R(n) = Iψ1 (n) + εA(n−δn1r ,θ ) or R(n) = Iψ1 (n−δn1r ,θ ) + εA(n)

Credit: P. Ingraham and the GPI team


PI_beta_pic_boiling_speckles.mov
Media File (video/quicktime)
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LOCI - KLIP

Solving the least squares
problem:

min{ck}{
∑n

(
T (n)−∑K

k=1 ckRk(n)
)2
}

.

Equivalent to:

E [RR]C = T

where E [RR] is the
correlation matrix of the
ensemble of references over
the zone of the image we
chose.

Several routes to invert this

Tweak set up of the inverse problem
(geometry, selection of references)

Regularize of the inverse problem (SVD
truncation, PCA)

K pixels in zone

N
 references

-

…
…

Image, or part of image



Key questions Image Formation Data Analysis Astrophysical Noise Recap

LOCI - KLIP

Solving the least squares
problem:

min{ck}{
∑n

(
T (n)−∑K

k=1 ckRk(n)
)2
}

.

Equivalent to:

E [RR]C = T

where E [RR] is the
correlation matrix of the
ensemble of references over
the zone of the image we
chose.

Several routes to invert this

Tweak set up of the inverse problem
(geometry, selection of references)

Regularize of the inverse problem (SVD
truncation, PCA)

…
…

……

N
 references

K pixels in zone

K pixels in zone

N references

…
…

K pixels in zone

=x



Key questions Image Formation Data Analysis Astrophysical Noise Recap

LOCI - KLIP

Solving the least squares
problem:

min{ck}{
∑n

(
T (n)−∑K

k=1 ckRk(n)
)2
}

.

Equivalent to:

E [RR]C = T

where E [RR] is the
correlation matrix of the
ensemble of references over
the zone of the image we
chose.

Several routes to invert this

Tweak set up of the inverse problem
(geometry, selection of references)

Regularize of the inverse problem (SVD
truncation, PCA)

K pixels in zone

-

…
…

Image, or part of image

? …

…

All possible reference images



Key questions Image Formation Data Analysis Astrophysical Noise Recap

LOCI - KLIP

Solving the least squares
problem:

min{ck}{
∑n

(
T (n)−∑K

k=1 ckRk(n)
)2
}

.

Equivalent to:

E [RR]C = T

where E [RR] is the
correlation matrix of the
ensemble of references over
the zone of the image we
chose.

Several routes to invert this

Tweak set up of the inverse problem
(geometry, selection of references)

Regularize of the inverse problem (SVD
truncation, PCA)

K pixels in zone

-

…
…

Image, or part of image

? …

…

All possible reference images



Key questions Image Formation Data Analysis Astrophysical Noise Recap

LOCI - KLIP

Solving the least squares
problem:

min{ck}{
∑n

(
T (n)−∑K

k=1 ckRk(n)
)2
}

.

Equivalent to:

E [RR]C = T

where E [RR] is the
correlation matrix of the
ensemble of references over
the zone of the image we
chose.

Several routes to invert this

Tweak set up of the inverse problem
(geometry, selection of references)

Regularize of the inverse problem (SVD
truncation, PCA)

dr =
fov

Nr

d✓ =
2⇡

N✓

N�✓

N�+
�

N���

Astrophysical source in 
target image

Astrophysical source in refrences 
images kept in PSF library

Astrophysical source in refrences 
rejected from in PSF library

Azimuthal motion of 
signal across PSF library 
(ADI)

Radial motion 
of signal 
across PSF 
library (SSDI)

Star

u✓S
urS

e

n
✓t

xS

S



Key questions Image Formation Data Analysis Astrophysical Noise Recap

LOCI - KLIP

Solving the least squares
problem:

min{ck}{
∑n

(
T (n)−∑K

k=1 ckRk(n)
)2
}

.

Equivalent to:

E [RR]C = T

where E [RR] is the
correlation matrix of the
ensemble of references over
the zone of the image we
chose.

Several routes to invert this

Tweak set up of the inverse problem
(geometry, selection of references)

Regularize of the inverse problem (SVD
truncation, PCA)

N
 references

N references

…
…

K pixels in zone

= x x

-1, > 0
Penalty terms



Key questions Image Formation Data Analysis Astrophysical Noise Recap

LOCI - KLIP

Solving the least squares
problem:

min{ck}{
∑n

(
T (n)−∑K

k=1 ckRk(n)
)2
}

.

Equivalent to:

E [RR]C = T

where E [RR] is the
correlation matrix of the
ensemble of references over
the zone of the image we
chose.

Several routes to invert this

Tweak set up of the inverse problem
(geometry, selection of references)

Regularize of the inverse problem (SVD
truncation, PCA)



Key questions Image Formation Data Analysis Astrophysical Noise Recap

LOCI - KLIP

Solving the least squares
problem:

min{ck}{
∑n

(
T (n)−∑K

k=1 ckRk(n)
)2
}

.

Equivalent to:

E [RR]C = T

where E [RR] is the
correlation matrix of the
ensemble of references over
the zone of the image we
chose.

Several routes to invert this

Tweak set up of the inverse problem
(geometry, selection of references)

Regularize of the inverse problem (SVD
truncation, PCA)

……

Npca Modes

K pixels in zone

-

…
…

N
pca M

odes

K pixels in zone



Key questions Image Formation Data Analysis Astrophysical Noise Recap

This is where the magic happens

Marois et al. (2008), Marois et al. (2010)
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This is where the magic happens

Marois et al. (2008), Marois et al. (2010)
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This is where the magic happens

Oppenheimer et al. (2013), Pueyo et al. (2015)
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This is where the magic happens

Soummer et al. (2011)
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This is where the magic happens

Rameau et al. (2012)
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False positives and false negatives

The initial speckles follow Rice statistics, (hopefully) the steps above make
them “more” Gaussian, Marois et al. (2007).

– 18 –

Fig. 2.— Left panel: PDF for a Gaussian distribution (solid line) and modified Rician with

Ic/Is = 10 (dashed line), Ic/Is = 1 (dot-dashed line), and Ic/Is = 0.1 (dotted line). Right:

corresponding CL as a function of detection threshold.

– 25 –

Fig. 9.— The different steps involved in estimating a detection threshold in a specific region

of the PSF using the confidence level approach. Panel 1 shows a Gemini CH4-short saturated

PSF image that has been reduced and registered to the image center. Panels 2, 3 and 4

show respectively the same PSF image but with the secondary support structure diffraction

masked, after noise filtering, and after noise normalizing. Panels 5 and 6 show respectively

the pixel intensity distribution (PDF) and corresponding CL curve inside a typical region of

the PSF shown in panel 4. An extrapolation of the CL curve gives the 1−3×10−7 confidence

level detection threshold for that region (here approximately 12.6σ). Steps illustrated by

panels 5 and 6 are repeated for all regions of the PSF and after rotating the regions by 30

and 60 degrees to eliminate the bias resulting from point sources located at the edge of two

regions.
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False positives and false negatives

When working at small separations a penalty term needs to be taken into
account to include uncertainties associated with small number statistics when
estimating the empirical variant of the noise, Mawet et al. (2014).

4 Mawet et al.
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Fig. 3.— β Pictoris contrast curve (top image, continuous curve)
and image (bottom left, North is not up) taken with NACO in
the L-band (Absil et al. 2013), both corrected for the ADI-PCA
data reduction throughput. The small green circle is of radius
r = 1λ/D, while the big orange one is of radius r = 5λ/D. A
fake planet was injected at r = 1.5λ/D (to the right of the green
circle) at the 5σ throughput-corrected contrast level as presented in
Absil et al. (2013). This 5σ fake companion is supposedly yielding
a solid detection, rejecting the null hypothesis at the 1 − 3 × 10−7

CL, assuming normally distributed noise. This is clearly not the
case here because of the effect of small sample statistics at small
angles. The false positive fraction curve (FPF, dashed line) traces
the increase of false alarm probability (or equivalently, the decrease
of CL) towards small angles. Note that the scale of the y axis is
unique, the contrast and FPF curves being dimensionless. Both
quantities are related but have different meanings (see text for
details).

lary of the present work is that “all 5σ contrasts are not
equivalent” in terms of FPF (or CL), which carries the
risk of strongly biasing potential comparisons.

2.1. Signal detection theory

Referring to the SDT, the detection problem consists
in making an informed decision between two hypotheses,
H0, signal absent, and H1, signal present (see Fig. 3).
The application of hypothesis testing for the binary clas-
sification problem of exoplanet imaging was discussed in
details by Kasdin & Braems (2006), using matched fil-
tering and Bayesian techniques, but this study focussed
on background and photon noise only without any con-
siderations for speckle noise or sample sizes.

Because most exoplanet hunters want to minimize the
risk of announcing false detections or waste precious tele-
scope time following up artifacts, high contrast imaging
has mostly been concerned (so far) with choosing a detec-
tion threshold τ , defining the contrast which minimizes
the FPF, defined as

FPF =
FP

TN + FP
=

∫ +∞

τ

pr(x|H0)dx (2)

where x is the intensity of the residual speckles, and

1 λ/D
2 λ/D

3 λ/D

r

Fig. 4.— The number of resolution elements at a given radius
r, is 2πr (here shown for r ranging from 1 to 3 λ/D). At close
separation, the speckle PDF nature is likely varying drastically as
a function of r, because of the well-known sensitivity of the PSF
to low-order aberrations, especially after a coronagraph.

pr(x|H0), the probability density function of x under the
null hypothesis H0. FP is the number of false positives
and TN, the number of true negatives. Under H0, the
confidence level CL = 1−FPF is called the “specificity”
in rigorous statistical terms. However, exoplanet hunters
who want to optimize their survey, and derive meaningful
conclusions about null results, also wish to maximize the
so-called “True Positive Fraction” (TPF), or in statistical
terms the “sensitivity” (some authors refer to “complete-
ness”, see, e.g. Wahhaj et al. 2013), which is defined as

TPF =
TP

TP + FN
=

∫ +∞

τ

pr(x|H1)dx (3)

with pr(x|H1), the probability density function of x un-
der the hypothesis H1, and where TP is the number of
true positives and FN, the number of false negatives. For
instance, a 95% sensitivity (or completeness) for a given
signal µc, and detection threshold τ means that 95% of
the objects at the intensity level µc will statistically be
recovered from the data (see Sect. 4.2.2). Ultimately, the
goal of high contrast imaging, as a signal detection ap-
plication, is to maximize the TPF while minimizing the
FPF. Optimizing detection thus consists in maximizing
the so-called AUC, i.e. the area under the “Receiver Op-
erating Characteristics” (ROC) curve. The ROC curve
plots the TPF as a function of the FPF. The optimal
linear observer, or discriminant, maximizing the AUC is
called the Hotelling observer, and can be regarded as a
generalization of the familiar prewhitening matched filter
(see, for instance Caucci et al. (2007), or Lawson et al.
(2012) for a review).

2.2. Small sample statistics

In the close separation regime (down to the diffraction
limit at 1λ/D), speckle noise dominates at all contrast
levels, even after being controlled or nulled by active

Contrast limitations set by small sample statistics 5

speckle correction (Malbet et al. 1995; Bordé & Traub
2006; Give’on et al. 2007) and/or a dedicated low-order
wavefront sensor (see, e.g., Guyon et al. 2009). In the
case of very high contrast images (109 : 1 and higher),
other sources of noise such as photon Poisson noise,
readout or dark current might become dominant, espe-
cially at larger separations (see, e.g., Brown (2005), and
Kasdin & Braems (2006) for thorough treatments of the
uniform background case). At small separations, these
factors are presumably less important compared to the
speckle variability induced by residual low-order aberra-
tions. The detailed error budget largely depends on the
hardware available though, and must therefore be stud-
ied on a case-by-case basis, which is beyond the scope of
this paper.

Quasi-static speckles at a given radius r are all drawn
from the same parent population of mean µ and standard
deviation σ (Marois et al. 2008). Assuming the detec-
tion is performed on individual resolution elements λ/D,
we must treat speckle noise on this characteristic spa-
tial scale as well. We also note that the size of residual
speckles is always ∼ λ/D, even after coherent (inter-
ference) or incoherent (intensity image) linear combina-
tions. At the radius r (in resolution element units λ/D),
there are 2πr resolution elements and thus possible non-
overlapping speckles, i.e. about 6 at 1λ/D, 12 at 2λ/D,
18 at 3λ/D, and 100 at 16λ/D (see Fig. 4). The em-
pirical estimators of the mean and standard deviation, x̄
and s, are thus calculated from a sample with a limited
number of elements (DOF) shrinking with r. For sam-
ples containing less than ∼ 100 elements (this number
is somewhat arbitrary and varies according to practices
and applications), we are in the regime of small sample
statistics, which significantly affects the calculation of
Eq. 2 and Eq. 3. In this paper, we thus seek to quantify
the effect of small sample statistics on the computation
of the pr(x|H0) (and pr(x|H1)), and its impact on the
choice of the detection threshold τ , and thus contrast.

In the following, as already discussed, we assume that
images have been post-processed by one of the meth-
ods presented in Sect. 1.1. These techniques have been
empirically shown to be the most efficient and practi-
cal way to use prior information in order to whiten the
data. Our working hypothesis in the following is thus
that of i.i.d. samples, so we can focus primarily on the
effect of small sample sizes. In Sect. 3.3, we nevertheless
use Monte-Carlo numerical simulations to explore and
discuss the consequences of non-i.i.d. noise (MR distri-
bution) and small sample sizes altogether.

3. STUDENT’S T-TESTS

The t-statistics was introduced in 1908 by William
S. Gosset, a chemist working for the Guinness brewery
(Student 1908). William S. Gosset was concerned about
comparing different batches of the stout, and developed
the t-test, and the t-distribution for that purpose. How-
ever, his company forbade him from publishing his find-
ings, so Gosset published his mathematical work under
the pseudonym “Student”.

3.1. One-sample t-test

In essence, the one-sample t-test enables us to test
whether the mean of a normal parent population has a
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Fig. 5.— Student’s t-distribution PDF (DOF=11,5,3) compared
to the normal Gaussian distribution and a few representative
MR distributions (MR10: Ic = 10 Is, MR1: Ic = Is, MR01:
Ic = 0.1 Is). It illustrates the PDF tail broadening as the num-
ber of DOF (sample size minus 1) decreases. Note that no specific
normalization was applied to these PDF.

specific value µ under a null hypothesis. Gosset showed
that the quantity (x̄−µ)/(s/

√
n), where x̄ and s are the

empirical mean and standard deviation respectively, and
n is the sample size, follows a distribution that he called
the “Student distribution”, or “t-distribution”, with n−1
DOF:

pt(x, ν) =
Γ

(
ν+1
2

)
√

νπΓ
(

ν
2

)
(

1 +
x2

ν

)− ν+1
2

, (4)

where Γ is the Gamma function, and where the pa-
rameter ν is the number of DOF (here ν = n − 1). The
one-sample t-test allows accepting or rejecting the null
hypothesis once a CL has been set. As a corollary, if
one accepts the null hypothesis, a confidence interval
on the mean of the parent population can be derived:
µ ∈ [x̄ − pts/

√
n; x̄ + pts/

√
n].

The t-distribution pt is symmetric and bell-shaped, like
the normal distribution, but has broader tails, meaning
that it is more prone to producing values that fall far
from its mean. When ν is large, Student’s t-distribution
converges towards the normal distribution (see Fig. 5).
The t-test is said to be robust to moderate violations
of the normality assumption for the underlying popula-
tion (Student 1908; Lange et al. 1989). Indeed, the par-
ent population does not need to be normally distributed,
but the population of empirical sample means x̄ (i.e. the
sampling distribution), is assumed to be normal by the
CLT, therefore valid for reasonably large samples. This
particularly interesting property will be put to the test
in Sect. 3.3.

3.2. Two-sample t-test

The detection process can be viewed as a test compar-
ing one resolution element at a time (sample #1) against
all the remaining n−1 ones (sample #2) at the same ra-
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False positives and false negatives

In the case of a detection we care about the False Positive Fraction. In the case
of upper limits we care about the True Positive Fraction, Wahhaj et al. (2015)
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Fig. 4.— Detection rates for the example case of 3� signals and a detection threshold set at 2�.
Here, we illustrate the relationship between False Positive Fraction (FPF), False Detection Rate
(FDR), True Detection Rate (TDR) and True Positive Rate (TPR or Completeness) and how they
depend on True and False Positives (TP shown in green and FP showin in red) and True and False
Negatives (TN shown in grey and FN shown in yellow). The FDR, which determines the telescope
time spent following-up bogus detections, should be minimized. This can be quite di↵erent in
magnitude from the FPR.
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Receiver Operating Characteristic

An “observer”’ convert pixel maps into one
scalar number that measures how the
confidence in the detection of signal.
The Receiver Operating Characteristic of a
given observer illustrates how the FPF and
TPF varies when the decision making
threshold changes. Caucci et al. (2012).

Decision making process

Pick an algorithm to subtract noise
and and observer.

Based on the noise properties and the
observer calculate ROC.

Figure out optimal threshold on the
ROC to classify date under the
assumption of a given utility function.

A utility function assigns costs:

False Positives: cost is the non
detections of a planet that is actually
there.

False Negative: cost is using telescope
ressources to follow up a “speckle”
while those could be allocated to the
detection a planet that is actually
there, around another star.
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Problem....PSF subtraction algorithms also subtract the signal
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Problem....PSF subtraction algorithms also subtract the signal

The least squares speckles fitting in the presence of signal can be written as:

min{ck}

{
∑n

(
[Iψ0 (n) +A0(n)]−∑K

k=1(ck + δck)[Iψk (n) +Ak(n)]
)2
}

.

K pixels in zone

N
 references

-

…
…

Image, or part of image

++

Stellar PSF Coefficients 

 Perturbation to coefficients due to faint signal  

+

Contribution of stellar PSF Contribution of faint signal
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Problem....PSF subtraction algorithms also subtract the signal

Solution is to inject a negative model of the signal in the entire observing
sequence and minimize the residuals over a range of hypothetical astrophysical
observables. This can be done in conjunction with any of the algorithms
described before. Marois et al. (2010), Lagrange et al. (2012).
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Problem....PSF subtraction algorithms also subtract the signal

Solution is to inject a negative model of the signal in the entire observing
sequence and minimize the residuals over a range of hypothetical astrophysical
observables. Example of a grid search for astrometry and photometry,
Morzinski et al. (2015).
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Figure D4. Grid search in the M ′ images for the best-fit photometry and astrometry of the planet, using PCA with 20 modes. Left
column: x position (detector coordinates); Center column: y position (detector coordinates); and Right column: flux ratio. Top row:
Parabola fit, local regions; Second row: Gaussian fit, local regions; Third row: Parabola fit, uniform regions; and Bottom row: Gaussian
fit, uniform regions.
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Problem....PSF subtraction algorithms also subtract the signal

Solution is to inject a negative model of the signal in the entire observing
sequence and minimize the residuals over a range of hypothetical astrophysical
observables. Example of an MCMC for astrometry and photometry, Bottom et
al. (2014).

– 5 –

Fig. 1.— Left: a) the background-subtracted target median image, b) the background-subtracted

reference star median image, c) the background-subtracted point-spread function image, d) best-

fitting model from the MCMC algorithm combining images b) and c) attempting to match a) as

explained above. The stretch is nonlinear to better show the companion and speckles. Right:

All the one and two dimensional projections of the posterior probability distributions of the pixel

shifts (xc, yc, the reference background scaling factor (Ra, and the PSF amplitude used to fit

the companion Pa. The two-dimensional projections show very little covariance among any two

parameters, and the marginal distribution histograms (along the diagonal) are nicely peaked.
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Problem....PSF subtraction algorithms also subtract the signal

Solution is to inject a negative model of the signal in the entire observing
sequence and minimize the residuals over a range of hypothetical astrophysical
observables.

Main drawbacks

The speckle subtraction algorithm has to be used each time around
(involves a matrix inversion).

There is no guarantee that the cost-function minimized/likelihood explored
does not feature local minima. One might get stuck in them.

In general these are not limiting factors in ”small dimensional
configurations” ( astrometry and photometry = 3 dimensions).

This becomes a severe limiting factor when trying to get spectrum
(astrometry and spectrum = 39 dimensions with GPI).
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Fortunately, we can actually predict what will happen

There is a way to write the influence of the astrophysical signal as:

PCA(Speckles +Signal) = PCA(Speckles) +Signal δPCA(Speckles)

...and this applies to any algorithm relying on covariances. Pueyo (2016).
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Fortunately, we can actually predict what will happen

There is a way to write the influence of the astrophysical signal as:
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...and this applies to any algorithm relying on covariances. Pueyo (2016).
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Fortunately, we can actually predict what will happen

There is a way to write the influence of the astrophysical signal as:

PCA(Speckles +Signal) = PCA(Speckles) +Signal δPCA(Speckles)

...and this applies to any algorithm relying on covariances. Pueyo (2016).
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The linear model works:

If the astrophysical source is faint when compared to the speckles.

If the astrophysical source as bright as the speckles/brighter, and the
algorithm parameters are chosen accordingly (not too aggressive).
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What does it mean?

Yk(x) = Zk(x) + ε∆Zk(x) . We can rank them in order of ||ε∆Zk(x)/Zk(x)||.

Three main terms:

over-subtraction: unperturbed
Principal Components Zk(x). Scales as
||Zk(x)||= 1.

direct self-subtraction: presence of an
astrophysical source at various
parallactic angles and wavelengths in
the observing sequence multiplied by
LOCI coefficient. Scales as ε/

√
Λk .

indirect self-subtraction: perturbation
in the LOCI coefficient. Scales as
ε/Λk .
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As KKlip(e.g Λk decreases) then self-subtraction becomes more and more
dominant... estimation of astrophysical observables becomes increasingly
complicated.
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Application to spectral extraction
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Application to spectral extraction
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Application to spectral extraction
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Application to spectral extraction
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Application to spectral extraction

Application:  
YJHK Spectrum of  Pic b 

Chilcote, Pueyo, De Rosa, et al. In prep. 

low-gravity and young 
(Faherty et al. 2013) 
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Application to astrometry

Wang et al. (2016).
18 Wang et al.

Figure B1. The data, best fit forward model, and residual map after the model as been subtracted from the data for each of
the twelve datasets. In each row, we plot two datasets. For each dataset, we plot the data (left), best fit forward model (center),
and residual map (right) on the same color scale. While the scale of each dataset is di↵erent, zero is mapped to the same color
for all the datasets.
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Application to astrometry

Wang et al. (2016).
8 Wang et al.

Figure 2. Posterior distribution of the four parameters in the MCMC fit for the astrometry for the 2014 November 18 epoch.
The vertical dashed lines in the marginalized posterior distribution plots indicate the 16th, 50th, and 84th percentile values.

of the later datasets where the planet is observed closer

in, we were limited by the SNR of the planet and un-

able to achieve 1 mas precision. In the 2015 December

5 dataset, the noise was higher due to the planet be-

ing fainter relative to the star in J -band. In the 2016

January 21 dataset, a combination of poor seeing and

a small amount of usable data limited our astrometric

precision.

Overall though, this GPI � Pic b data is an excel-

lent demonstration for Bayesian KLIP-FM Astrometry

as the planet is bright enough that the extended PSF

features, such as the negative self-subtraction lobes, are

clearly seen and provide significant information to con-

strain the position of the planet. For fainter planets,

the extended features are harder to distinguish from the

noise. As one of the main advantages of BKA over tech-

niques that do not forward model the PSF is being able

to forward model the extended self-subtraction lobes,

the astrometric improvement would not be as large for

lower signal-to-noise ratio planets. There still should

be some improvement though due to accurately mod-

elling the over-subtraction on the core of the PSF and

small contributions from the extended features even if

they are hard to distinguish from noise. Regardless, in

addition to the improved precision, BKA should also

more accurately estimate the uncertainties as it fits for

the correlation scale of the noise at the location of the

planet.

Table 2. Astrometric Error Budget and Measured Astrometry of � Pic b

Dataset

Planet x/y

Uncertainty

(mas)

Star x/y

Uncertainty

(mas)

Plate Scale
Uncertainty

(mas)

PA
Uncertainty

(�)
�RA
(mas)

�Dec
(mas)

Radial
Separation (mas)

Position Angle

(�)

2013 Nov 16 K1 0.6/0.7 0.7/0.7 0.3 0.13 -228.5 ± 1.3 -366.2 ± 1.1 431.6 ± 1.0 212.0 ± 0.2

2013 Nov 16 K2 0.5/0.4 0.7/0.7 0.3 0.13 -229.2 ± 1.2 -364.5 ± 1.0 430.6 ± 0.9 212.2 ± 0.2

2013 Nov 18 H 0.3/0.3 0.7/0.7 0.3 0.13 -229.1 ± 1.1 -364.7 ± 1.0 430.6 ± 0.8 212.1 ± 0.2

Table 2 continued
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Application to astrometry

Wang et al. (2016). Pic b Orbit 

Wang et al. Submitted. 
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Application to astrometry

Wang et al. (2016).Validation through Orbit Fitting 

Wang et al. Submitted. 
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Application to planet detection
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Application to planet detection
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Application to planet detection

Ruffio et al., in prep.

The Forward Model Captures PSF Biases
𝑃𝑘 𝒦(𝐼𝑘) Δ𝑃𝒦 (𝑁𝑘)

Noise (N) Template (T) Observation (Y) Matched-Filter

Cross-correlation
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Improving Exoplanet Sensitivity with Direct Imaging 
using KLIP Forward Modelling

Jean-Baptiste Ruffio, Bruce Macintosh, Jason J. Wang , Laurent Pueyo and the GPI Team
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Matched Filter Optimization

Solution: Forward Model Matched Filter (FMMF)

Problem: KLIP Self-Subtraction

• The Receiver Operating Characteristic (ROC)
indicates the cost of a true detection in term
of false positives. It is the right tool to
compare detection metrics.

• Contrast curves from different metrics should 
be drawn at the same false positive rate, 
which is not necessarily 5𝜎.

• Already operational for the GPI Exoplanet Survey.
• Automatic selection of candidates to follow up.

• Two spectra suffice to reduce any other.
• Movement ≈ 0.5 pixel maximizes SNR.
• FMMF improves SNR by 50% at 0.3′′.

Method: Matched Filter

• KLIP Forward Model[3] analytically accounts
for the self-subtraction term and can be
used as the Matched Filter template.

• It is the 1st order term in the Taylor
expansion of the KLIP function𝒦 .

Goals:
• Enhancing exoplanets detection for direct imaging surveys.
• Develop a framework to compare detection metrics.

Movement Optimization 

Aggressiviness

+50%

Detection Metric Comparison

Implementation for GPIES

T-Type L-Type

Spectral Template Optimization
𝐴𝑟𝑔𝑚𝑎𝑥(𝑟,𝜃) 𝑇 𝑌

The most likely location for a planet[1] is the maximum of 
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Matched Filter Optimization

Solution: Forward Model Matched Filter (FMMF)

Problem: KLIP Self-Subtraction

• The Receiver Operating Characteristic (ROC)
indicates the cost of a true detection in term
of false positives. It is the right tool to
compare detection metrics.

• Contrast curves from different metrics should 
be drawn at the same false positive rate, 
which is not necessarily 5𝜎.

• Already operational for the GPI Exoplanet Survey.
• Automatic selection of candidates to follow up.

• Two spectra suffice to reduce any other.
• Movement ≈ 0.5 pixel maximizes SNR.
• FMMF improves SNR by 50% at 0.3′′.

Method: Matched Filter

• KLIP Forward Model[3] analytically accounts
for the self-subtraction term and can be
used as the Matched Filter template.

• It is the 1st order term in the Taylor
expansion of the KLIP function𝒦 .
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• Enhancing exoplanets detection for direct imaging surveys.
• Develop a framework to compare detection metrics.
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Matched Filter Optimization

Solution: Forward Model Matched Filter (FMMF)

Problem: KLIP Self-Subtraction

• The Receiver Operating Characteristic (ROC)
indicates the cost of a true detection in term
of false positives. It is the right tool to
compare detection metrics.

• Contrast curves from different metrics should 
be drawn at the same false positive rate, 
which is not necessarily 5𝜎.

• Already operational for the GPI Exoplanet Survey.
• Automatic selection of candidates to follow up.

• Two spectra suffice to reduce any other.
• Movement ≈ 0.5 pixel maximizes SNR.
• FMMF improves SNR by 50% at 0.3′′.

Method: Matched Filter

• KLIP Forward Model[3] analytically accounts
for the self-subtraction term and can be
used as the Matched Filter template.

• It is the 1st order term in the Taylor
expansion of the KLIP function𝒦 .
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• Enhancing exoplanets detection for direct imaging surveys.
• Develop a framework to compare detection metrics.
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Matched Filter Optimization

Solution: Forward Model Matched Filter (FMMF)

Problem: KLIP Self-Subtraction

• The Receiver Operating Characteristic (ROC)
indicates the cost of a true detection in term
of false positives. It is the right tool to
compare detection metrics.

• Contrast curves from different metrics should 
be drawn at the same false positive rate, 
which is not necessarily 5𝜎.

• Already operational for the GPI Exoplanet Survey.
• Automatic selection of candidates to follow up.

• Two spectra suffice to reduce any other.
• Movement ≈ 0.5 pixel maximizes SNR.
• FMMF improves SNR by 50% at 0.3′′.

Method: Matched Filter

• KLIP Forward Model[3] analytically accounts
for the self-subtraction term and can be
used as the Matched Filter template.

• It is the 1st order term in the Taylor
expansion of the KLIP function𝒦 .

Goals:
• Enhancing exoplanets detection for direct imaging surveys.
• Develop a framework to compare detection metrics.
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• The movement is a criterion in
pixel used to exclude images
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Contrast curves and completeness

Macintosh et al. (2015)

Fig. 2. Combined 30-minute GPI image of Beta Pictoris. The spectral data has been

median-collapsed into a synthetic broadband 1.5–1.8 µm channel. The image has been PSF

subtracted using angular and spectral di↵erential techniques. Beta Pictoris b is detected at a

signal-to-noise of ⇠ 100
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Fig. 3. Contrast vs. angular separation at H (1.6 µm) for a PSF-subtracted 30-minute

GPI exposure. Contrast is shown for PSF subtraction based on either a flat spectrum similar

to a L dwarf or a methane-dominated spectrum (which allows more e↵ective multi-wavelength

PSF subtraction.) For comparison, a 45-minute 2.1 µm Keck sequence is also shown. (Other

high-contrast AO imaging setups such as Subaru HiCIAO, Gemini NICI, and VLT NACO have

similar performance to Keck.)

8 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

How are survey results presented

Pick the “right” contrast curve for
each star. Delta mag vs separation.

Convert into Mass vs SMA using your
favorite model for mass-luminosity and
Monte Carlo simulations to explore all
possible orbits.

Convert into Mass vs SMA using your
favorite model for mass-luminosity and
analytical propagation of priors.

Sum over all stars in survey.
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Matched Filter Optimization

Solution: Forward Model Matched Filter (FMMF)

Problem: KLIP Self-Subtraction

• The Receiver Operating Characteristic (ROC)
indicates the cost of a true detection in term
of false positives. It is the right tool to
compare detection metrics.

• Contrast curves from different metrics should 
be drawn at the same false positive rate, 
which is not necessarily 5𝜎.

• Already operational for the GPI Exoplanet Survey.
• Automatic selection of candidates to follow up.

• Two spectra suffice to reduce any other.
• Movement ≈ 0.5 pixel maximizes SNR.
• FMMF improves SNR by 50% at 0.3′′.

Method: Matched Filter

• KLIP Forward Model[3] analytically accounts
for the self-subtraction term and can be
used as the Matched Filter template.

• It is the 1st order term in the Taylor
expansion of the KLIP function𝒦 .

Goals:
• Enhancing exoplanets detection for direct imaging surveys.
• Develop a framework to compare detection metrics.
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The most likely location for a planet[1] is the maximum of 
the cross-correlation between the planet template and 
the observation. This is called a matched Filter.

• The movement is a criterion in
pixel used to exclude images
from the reference library.

• Decreasing the movement
parameter yields better speckle
subtraction but more self-
subtraction. A compromise has
to be made.
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How are survey results presented

Pick the “right” contrast curve for
each star. Delta mag vs separation.

Convert into Mass vs SMA using your
favorite model for mass-luminosity and
Monte Carlo simulations to explore all
possible orbits.

Convert into Mass vs SMA using your
favorite model for mass-luminosity and
analytical propagation of priors.

Sum over all stars in survey.
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Contrast curves and completeness

Wahhaj et al. (2013)

– 54 –

Fig. 2.— The contrast curves for all Campaign debris disk targets, categorized by H-band

magnitude of the primary. For separations less than ∼1.5′′, the CH4 filter contrasts are

usually better. For larger separations, the H-band contrasts are better. In the figure above,

beyond the dotted-line we show the H-band contrasts. When only one filter is available, the

star’s name in the legend is tagged with the filter name.

How are survey results presented

Pick the “right” contrast curve for
each star. Delta mag vs separation.

Convert into Mass vs SMA using your
favorite model for mass-luminosity and
Monte Carlo simulations to explore all
possible orbits.

Convert into Mass vs SMA using your
favorite model for mass-luminosity and
analytical propagation of priors.

Sum over all stars in survey.
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Contrast curves and completeness

Savransky et al. (2010)

– 14 –
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Fig. 1.— Comparison of empirical (black line) and derived (gray line) distributions assuming a

uniform distribution for ē and uniform and log distributions for ā. For uniformly distributed semi-

major axis we assumed a ∈ [0.5, 1.5], leading to r ∈ (0, 3], and for ā uniform in log a, we assumed

a ∈ [0.1, 10] leading to r ∈ (0, 20].

This preprint was prepared with the AAS LATEX macros v5.2.

How are survey results presented

Pick the “right” contrast curve for
each star. Delta mag vs separation.

Convert into Mass vs SMA using your
favorite model for mass-luminosity and
Monte Carlo simulations to explore all
possible orbits.

Convert into Mass vs SMA using your
favorite model for mass-luminosity and
analytical propagation of priors.

Sum over all stars in survey.
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Contrast curves and completeness

Brandt et al. (2014)

How are survey results presented

Pick the “right” contrast curve for
each star. Delta mag vs separation.

Convert into Mass vs SMA using your
favorite model for mass-luminosity and
Monte Carlo simulations to explore all
possible orbits.

Convert into Mass vs SMA using your
favorite model for mass-luminosity and
analytical propagation of priors.

Sum over all stars in survey.
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Other methods

Moving forward with data analysis

By and large most of the community is using “blind” Principal Component
Analysis to analyze high-contrast imaging data. This is an ancient method!
There is room to do better:

Use correlation between telemetry and images (Vogt et al., 2010).

Use the images (and maybe telemetry) a physical model of the complex
field at the telescope entrance (Ygouf et al., 2012).

Give up on the L2 norm (L1 norm?).

Use only positive modes and positive coefficients (Non Negative Matrix
Factorization).

“Track” the motion of the planet in the data (low rank sparse
decomposition, LLSG, Gomez et al., 2016).
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Astrophysical false positives
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Common proper motion for physical association

Combine proper motion and parallactic motion to establish physical
association. Rameau et al. (2013), Mawet et al. (2012)



Key questions Image Formation Data Analysis Astrophysical Noise Recap

Common proper motion for physical association

Combine proper motion and parallactic motion to establish physical
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Speeding the process up

This used to be a waiting game: proper and parallactic motion need to be
larger than uncertainty in astrometry.

Smaller error bars for astrometry do certainly help.

How to use MCMC to speed things up?
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1. INTRODUCTION

Monitoring the orbital motion of exoplanets, through
direct imaging (e.g., Chauvin et al. 2012; Kalas et al.
2013; Bonnefoy et al. 2014; Nielsen et al. 2014), or
through indirect techniques such as radial velocity
and transit measurements (e.g., Cumming et al. 2008;
Howard et al. 2012; Marcy et al. 2014; Moutou et al.
2015), can provide a wealth of information about their
properties, the processes through which they form, and
how they interact dynamically with other bodies in the
system. Accurately determining the orbital parame-
ters of exoplanets can constrain their masses and den-
sities (e.g., Charbonneau et al. 2000) and lead either to
the discovery of additional planets in the system (e.g.,
Nesvorný et al. 2012), or to the exclusion of additional
planets within a range of periods by invoking dynami-
cal stability arguments (e.g., Correia et al. 2005). Or-
bital parameters also provide insight as to how plane-
tary companions dynamically interact with circumstellar
material (e.g., Millar-Blanchaer et al. 2015). While the
orbital periods are typically decades or longer for directly
imaged planets, accurate astrometric monitoring of these
systems can lead to preliminary constraints on their or-
bital parameters before a significant portion of the orbit
is observed (e.g., Pueyo et al. 2015).

51 Eridani (51 Eri) is a nearby (29.43 ± 0.29 pc;
van Leeuwen 2007) member of the young (24 ±
3 Myr; Bell et al. 2015) β Pictoris moving group
(Zuckerman et al. 2001). Recently, Macintosh et al.
(2015) reported the discovery of a low-mass (2–10 MJup)
planet at a projected separation of 13.2 ± 0.2 AU based
on observations with the Gemini Planet Imager (GPI;
Macintosh et al. 2014). Based on J- and H-band spec-
troscopy, and L′ photometry, 51 Eri b was shown to
have a spectrum with strong methane and water absorp-
tion, with a temperature of 600–750 K (Macintosh et al.
2015). Due to the short baseline between discovery
and follow-up, it was only possible to rule out a sta-
tionary background object from a 2003 non-detection;
closer brown dwarf interlopers with non-zero proper mo-
tions could not be excluded. A statistical argument
based on the space density of T-dwarfs (Reylé et al. 2010;
Burningham et al. 2013), and the allowed range of dis-
tances of a foreground or background object based on the
apparent magnitude of 51 Eri b combined with the lumi-
nosity of T-dwarfs (Kirkpatrick et al. 2012), was used to
limit the possibility of an unassociated field brown dwarf
to a probability of 2.4 × 10−6.

In addition to the newly resolved planetary companion,
51 Eri has an infrared excess indicative of a circumstellar
debris disk (Patel et al. 2014; Riviere-Marichalar et al.
2014). The debris disk has yet to be spatially resolved,
so its geometry is unconstrained. At a projected sep-
aration of 1960 AU lies GJ 3305—an M-dwarf binary
with a semimajor axis of 9.80 ± 0.15 AU (Montet et al.
2015)—which is co-moving with 51 Eri, forming a bound
hierarchical system (Feigelson et al. 2006). While the
inclination of the GJ 3305 binary is well constrained
(i = 92.◦1 ± 0.◦2; Montet et al. 2015), the period of the
wide 51 Eri–GJ 3305 binary (∼ 104 years; Feigelson et al.
2006) precludes any such estimation of its inclination.

2. OBSERVATIONS AND DATA REDUCTION

Figure 1. Astrometry of 51 Eri b from 2014 December to 2015
September (filled red, blue, and green circles). The non-moving
background object hypothesis (light gray track), computed from
the Hipparcos-measured parallax and proper motion of 51 Eri, is
robustly rejected using these data alone. The measured displace-
ment is well within the range of orbital motion expected for bound
planetary-mass companions (blue envelopes). Likely orbital tracks
were generated using the Monte Carlo method described in Sec-
tion 4 to produce 104 orbits fit to the first epoch, with the plotted
ranges encompassing 68%, 95%, and 99.7% of the orbits.

51 Eri was initially observed with GPI at Gemini South
as a part of the GPI Exoplanet Survey (GPIES) on 2014
December 18 UT (GS-2014B-Q-500). A faint companion
candidate was identified, and subsequent observations
demonstrated that its spectral energy distribution was
consistent with that of a low-temperature, low-surface
gravity giant planet (Macintosh et al. 2015). In total,
51 Eri b has been successfully observed four times since
discovery in 2014, three times with GPI (GS-2014B-Q-
501, GS-2015A-Q-501), and once with NIRC2 at the
W. M. Keck 2 telescope using the facility adaptive op-
tics system (Wizinowich et al. 2000). A summary of
these observations is given in Table 1. For each GPI
epoch, the observing strategy was the same. The target
was acquired before transit to maximize field rotation
(Marois et al. 2006), and the observations were taken us-
ing the spectral coronagraphic mode, with either the J-
or H-band filters. In addition to these successful obser-
vations, 51 Eri was also observed with GPI in J-band on
2015 January 29, where 51 Eri b was not recovered due
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to poor image quality, and in H-band on 2015 August
30 and 31 where, although 51 Eri b was recovered, the
signal-to-noise ratio was significantly worse.

The GPI observations obtained on 2015 September 1
were reduced using the GPI Data Reduction Pipeline
(DRP; Perrin et al. 2014)1. The dark current was sub-
tracted and bad pixels were identified and fixed. The
shift in the position of the micro spectra on the detec-
tor due to mechanical flexure was measured by compar-
ing reference argon arcs taken monthly, to arcs obtained
after target acquisition (Wolff et al. 2014). The micro
spectra were extracted, converting the 2D image into a
3D (x, y, λ) datacube. These were then divided by a flat
field to correct for lenslet throughput, and were interpo-
lated along the wavelength axis to a common wavelength
vector across the bandpass. Finally, the optical distor-
tion was corrected for using measurements obtained with
a pinhole mask (Konopacky et al. 2014).

To minimize potential biases between the astrometry
presented in Macintosh et al. (2015) and the new mea-
surements presented here, we used Pipelines 1 and 3 from
Macintosh et al. (2015) to both perform the point-spread
function (PSF) subtraction, and to extract the astrome-
try of 51 Eri b. Pipeline 2 was switched to a Python im-
plementation (Wang et al. 2015) of the Karhunen–Loève
Image Projection algorithm (Soummer et al. 2012), and
uses a forward-modeled PSF to perform a Markov Chain
Monte Carlo (MCMC) analysis to determine the poste-
rior distributions of the separation and position angle of
51 Eri b.

The plate scale and position angle of GPI have been
monitored by continually observing a set of astromet-
ric calibrators with well-determined orbital solutions or
contemporaneous NIRC2 measurements, which has an
accurate astrometric solution (Yelda et al. 2010). In ad-
dition to observations listed in Konopacky et al. (2014),
we have observed the θ1 Ori B quadruple system an ad-
ditional four times, the HD 157516 binary twice, and
the HIP 80628 binary once. These observations were re-
duced as above, and PSF subtraction was not required.
The pixel positions of each component were measured as
in Konopacky et al. (2014).

Combining these measurements results in a plate scale
of 14.166± 0.007 mas lenslet−1, and a position angle off-
set of −1.◦10 ± 0.◦13. The position angle offset is defined
as the angle between the lenslet y-axis, and the elevation
axis of the telescope, measured east from north. Since
version 1.2, the DRP takes into account an offset of −1◦

while processing the data, and as such the difference be-
tween the true position angle and the measured posi-
tion angle in a DRP-reduced image is θtrue − θmeasured =
−0.◦10±0.◦13. There is no evidence of variations of either
the plate scale or position angle offset between observing
runs within the measurement uncertainties, so a single
value is adopted for all epochs. The revised astrometric
calibration was used to recalculate the astrometry from
Macintosh et al. (2015), which are consistent with the
previous values, and are shown in Table 1.

3. COMMON PROPER MOTION CONFIRMATION

Typically, confirmation of common proper motion is
achieved by comparing the motion of a candidate with re-

1 http://docs.planetimager.org/pipeline/

Figure 2. Normalized posterior distributions of the proper mo-
tion and distance of 51 Eri b assuming it is an unbound brown
dwarf, derived from the epochs in Macintosh et al. (2015) using
the updated astrometric calibration and the 2003 non-detection
(blue histogram). The addition of the 2015 September measure-
ment significantly improves the constraint on each parameter (red
histogram). The proper motion and distance to 51 Eri are de-
noted by the vertical lines. The distance posterior distribution is
strongly peaked at the distance of 51 Eri. Using this constraint,
the posterior probability that 51 Eri b is an unbound field dwarf is
calculated as 2 × 10−7.

spect to a background track for a stationary background
object with negligible parallax, so that the only relevant
movement is the parallax and proper motion of the pri-
mary star (e.g., Nielsen et al. 2013). Such an analysis for
51 Eri b is shown in Figure 1, with the astrometry diverg-
ing from the stationary background object track (2.8-σ
in ρ, 8.8-σ in θ). The spectrum of 51 Eri b excluded the
distant background star hypothesis, leaving two plausible
fits to the spectrum: an unbound field brown dwarf, or
a bound planet, as described by Macintosh et al. (2015),
who found a probability of 2.4×10−6 that the object was
an unbound field brown dwarf. By including the latest
epoch, this probability can be further reduced by solv-
ing for the allowable parallax and proper motion of an
unbound object, and reducing the volume in which an
unbound T-dwarf could exist.

Using the measured parallax and proper motion of
51 Eri (van Leeuwen 2007) the relative astrometry of
51 Eri b was converted into absolute astrometry. A
Metropolis–Hastings MCMC technique (e.g., Ford 2006)
was then used to fit the proper motion and parallax of
51 Eri b to both the absolute astrometry, and the non-
detection from 2003 discussed in Macintosh et al. (2015).
A uniform prior in the two proper motion directions was
used, and a p(d) ∝ d2 prior for the distance, with a
maximum distance of 200 pc. Good convergence was
achieved in the MCMC chains, with a Gelman–Rubin
statistic < 1.00007. The posteriors from the MCMC fit
are shown in Figure 2. The median distance from the
posteriors is 31 pc, with a 68% confidence interval be-
tween 25 and 39 pc, consistent with the distance to 51 Eri
(29.4± 0.3 pc). The offset in proper motion with respect
to the star is consistent with orbital motion occurring
over the span of the observations.

The calculation of the unbound brown dwarf proba-
bility from Macintosh et al. (2015) is updated using this
new distance constraint. The previous calculation found
the product of the number density of T-dwarfs and the
volume of a cone with the angular width of the GPI de-
tector out to the largest distance a T-dwarf could be seen

Speeding the process up

This used to be a waiting game: proper and parallactic motion need to be
larger than uncertainty in astrometry.

Smaller error bars for astrometry do certainly help.

The “astrophysical noise” hypothesis can also be fitted for.
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FIG. 2.— Color-magnitude diagram of field (black diamonds) and young (purple open circles) low-mass stars and brown dwarfs compared with the bona fide
or high confidence brown dwarf members of AB Doradus (red stars). Field dwarfs with spectral types in the T5–T6 range are circled in green for comparison
with SDSS J1110+0116. Young directly imaged planets, substellar companions and isolated brown dwarfs are displayed as blue right-pointing triangles for
comparison. The NIR colors of SDSS J1110+0116 are unusually red compared with field dwarfs of similar spectral types, despite its normal absolute J-band
magnitude. J and K magnitudes are displayed in the Mauna Kea Observatory (MKO) system.

(A color version of this figure is available in the online journal.)

radus. These objects fall on the right of the field sequence,
an effect that is also observed for earlier-type young brown
dwarfs and planetary-mass companions (e.g., Metchev & Hil-
lenbrand 2006; Kirkpatrick et al. 2008; Burgasser et al. 2010;
Barman et al. 2011; Liu et al. 2013a; Faherty et al. 2013). We
note that SDSS J1110+0116 has absolute magnitudes simi-
lar to field T5–T6 dwarfs in the 2MASS J, H, KS and WISE
W1 and W2 bands (Dupuy & Liu 2012). This may reflect
a balance between a large radius and enhanced dust opacity
in its high atmosphere. A compilation of the properties of
SDSS J1110+0116 are listed in Table 1.

4.4. The Search for a Co-Moving Companion
We performed a search for a co-moving companion to

SDSS J1110+0116 using all 335 2MASS entries within a
conservatively large radius of 150, which corresponds to
⇠ 17 000 AU at the distance of SDSS J1110+0116. We cross-
matched every 2MASS source with the AllWISE catalog us-
ing the method described in Paper V. The proper motions
that we derived for this set of objects have a median pre-
cision of ⇠ 20 masyr-1 for both µ↵ cos� and µ� . We find
no object matching the proper motion of SDSS J1110+0116

within 150 and < 240 masyr-1. We can thus reject the pos-
sibility of a common proper motion companion that would
be bright enough to be detected in the 2MASS and AllWISE
catalogs. The faintest of these 335 objects has J = 17.3 and
W1 = 17.1, and the completeness limits of 2MASS and All-
WISE are J = 15.8 (Skrutskie et al. 2006) and W1 = 17.11,
respectively.

5. CONCLUSION

Using existing previously reported astrometry and a new ra-
dial velocity measurement coupled with low-gravity features
in its atmosphere, we have determined that SDSS J1110+0116
is a T5.5 bona fide member of AB Doradus, with an estimated
mass of ⇠ 10–12 MJup. This is one of the coldest member of
any young moving group identified so far and its relatively
high brightness will make it useful to better understand how
age and surface gravity shape the atmospheres of low-mass
brown dwarfs and planets, influence evolution, and guide fu-
ture searches for planetary-mass members of young moving
groups. This new object falls into a region of the mass/age

1 See http://wise2.ipac.caltech.edu/docs/release/
allwise/expsup/sec2_4a.html



Key questions Image Formation Data Analysis Astrophysical Noise Recap

More information always helps

Macintosh et al. (2015)

The fact that spectrum of the point source looks like a cool T dwarf
enabled to calculate the contamination probability only using one epoch
and a non detection in 2003.



Key questions Image Formation Data Analysis Astrophysical Noise Recap

Age of stars: an oral story

Carson et al. (2009)

– 20 –

Fig. 1.— Left : JHK false-color image of κ And b after LOCI/ADI data reduction, for the

2012 July observations. Center : A corresponding signal-to-noise map created from the left

frame. The S/N ratio is calculated in concentric annuli around the star. The white plus sign

in each panel marks the location of the host star κ And; the black disks designate the regions

where field rotation is insufficient for ADI. White features indicate where the signal is roughly

equally strong in all wavelengths; colored features indicate where the signal is mismatched

between wavelengths, and is often indicative of residual noise. The lobes around κ And b

result from the Airy pattern produced by the Subaru AO188 system. Right : L′-band image

of κ And b from the 2012 July observations.

The mass of Kappa Andromeda
Spiegel and Burrows (2010)

We need the age of the system to tie the
luminosity of the companion to its mass
using evolutionary tracks
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The mass of Kappa Andromeda

Discovery paper, young (∼ 50 Myrs)
moving group, mass ∼ 12 MJup .

Second look: moving group
membership not so convincing, star too
bright to be young. Revised age ∼ 200
Myrs, mass ∼ 30 MJup .

Third look: it turns out that Kappa
And is a pole on fast rotator, which
explains why it is over luminous, back
to ∼ 50 Myrs, ∼ 12 MJup after all!



Key questions Image Formation Data Analysis Astrophysical Noise Recap

Age of stars: an oral story

Hinkley et al. (2013)
13

Fig. 12.— The UVWXYZ velocities and positions for the 20 bona
fide Columba members (open circles) listed in Malo et al. (2013)
while the filled (orange) symbol indicates the κ And system. While
the UVW values for κ And are in agreement with those for the
Columba group, it has the largest Y position of the group.

pc away from the centroid of Columba, and its velocity
differs by 1.5 km/s. Using an epicycle orbit approxima-
tion code, it appears that κ And was only slightly closer
to the Columba centroid in the past: 18 Myr ago it was
60 pc from Columba, and 30 Myr ago it was 74 pc from
Columba.

However, the outlying Y position of κ And (46.5pc)
raises questions about the likelihood of its formation near
the Columba groups centroid (Y =-31.3). Notably, for κ
And to have formed near Columba’s centroid 30 Myr
ago, it would have had to inherited a peculiar V velocity
of ∆V = (46.5 + 31.3pc)/(30 Myr) = 2.59 pc/Myr ∼
2.6 km/s. Given Columba’s current V velocity of V =-
21.3, a “runaway” star would have velocity V + ∆V ≃
-18.7 km/s. However, this is still within ∼1σ of what is
observed for κ And.

4. SUMMARY

In this work we have presented analysis of the spec-
tra and photometry of the companion κ And B, as well
as presented a comprehensive analysis of the age, multi-
plicity, and moving group kinematics of the κ And AB
system. We summarize our results as follows:

• Y JH-band low resolution spectra obtained
through high contrast imaging with Project 1640
are consistent with an intermediate age (!300
Myr) brown dwarf with L1±1 spectral type,
although similiarities with field mid-L objects are
present.

• By fitting synthetic models to the Project 1640
spectrophotometry, we constrain the surface grav-
ity and effective temperature of κ And B to be
log(g)=4.33+0.88

−0.79 and Teff=2040K+58
−64, respectively.

• Comparing these photospheric properties to the-
oretical isochrones in log(g) and Teff parameter
space indicates an age much older than the 30 Myr
age reported previously for κ And B.

• Previously published log(g) and Teff values for κ
And A are compared to theoretical isochrones, indi-
cating ages of ∼100-300 Myr. The HR diagram po-
sition of κ And A is consistent with the same age for
a range of assumed chemical compositions. Taken
together, the stellar parameters are consistent with
an isochronal age of 220± 100 Myr, where the age
uncertainty is dominated by the star’s chemical
composition.

• We combine aperture masking interferometry,
archival radial velocity data from the literature,
and archival multi-epoch imaging of κ And A to
rule out any faint stellar companions beyond ∼0.6
AU (Figures 11 and 13) that could be causing the
star to be overluminous for the originally-quoted 30
Myr age. In addition, we show that a nearly “pole-
on” viewing angle coupled with extremely rapid ro-
tation is unlikely to be the configuration contribut-
ing to this star’s overluminosity.

• κ And A appears to be a kinematic outlier com-
pared to other Columba members. While the ve-
locity of κ And is consistent with that of other
Columba members, its Galactic Y position is an
outlier. Taken together with its overluminosity and
low surface gravity expected for a 30 Myr old, late-
B star, κ And is most likely an interloper to the
Columba association.

• Through the use of Hertzsprung-Russell diagram
analysis as well as comparison of the log(g) and
Teff parameters for κ And A with theoretical
isochrones, we have shown that the star has an age
closer to 220 Myr than the originally assumed 30
Myr based on association with Columba. These
ages indicate that the mass of κ And B is 50+16

−13
MJup, rather than the previously claimed 12-14
Jupiter Masses.
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Fig. 9.— Previously published (see §3.2) determinations of Teff and log(g) for κ And (large points) are compared with Pleiades members as
discussed by David et al. (2014, in prep). Left: overlaid are the PARSEC isochrones of Bressan et al. (2012). The solid isochrones are for a
metallicity of [M/H]=-0.36, the value for κ And determined by Fitzpatrick & Massa (2005). The dashed isochrones are for solar metallicity.
The isochrone ages include the pre-main sequence evolution timescales. All of the published determinations of Teff and log(g) for κ And
are consistent with an isochrone age > 200 Myr in the sub-solar metallicity case and an age > 50 Myr in the solar metallicity case. The
shaded band labeled “LC IV” identifies the range of spectroscopic log(g) measurements occupied by subgiant standard stars taken from the
PASTEL data base (see text). Right: The solid curves are isochrones of Ekström et al. (2012) computed from stellar evolutionary models
that start on the ZAMS with a rotation rate of vrot/vcrit = 0.4. The dashed curves are isochrones computed from stellar evolutionary
models with zero rotation. All of the published determinations of Teff and log(g) are consistent with an isochrone age > 100 Myr for κ
And, with several being consistent with ∼200 Myr.

3.2.2. log(g) versus Teff Analysis

As originally presented at IAU Symposium 299 in Vic-
toria, BC on June 3, 2013, Figure 9 shows the log(g)
and Teff values previously listed in the literature plotted
along with two sets of isochrones for log(g) and Teff . The
left plot shows the PARSEC isochrones of Bressan et al.
(2012) for two cases: a metallicity of [M/H]=-0.36, the
value for κ And determined by Fitzpatrick & Massa
(2005), as well as solar metallicity. The isochrone ages
include the pre-main sequence evolution timescales. All
of the published determinations of Teff and log(g) for κ
And are consistent with an isochrone age > 200 Myr in
the sub-solar metallicity case and an age > 50 Myr in
the solar metallicity case.

The right panel of Figure 9 shows the isochrones taken
from Ekström et al. (2012). These models are particu-
larly applicable as they take the effects of stellar rotation
into account. Indeed, Carson et al. (2013) use the work
of Ekström et al. (2012) to derive a stellar mass. Figure 9
shows the isochrones for a rotation rate of vrot/vcrit = 0.4
(See 3.2.3), as well as those for zero rotation. All of the
published determinations of Teff and log(g) are consistent
with an isochrone age > 100 Myr for κ And, and several
values are consistent with the 200 Myr isochrone. Fur-
ther, for both plots, these literature points are located
in a region of the log(g) versus Teff diagram where the
isochrones are unambiguously well separated.

Also shown in Figure 9 are several log(g)and Teff val-
ues taken for individual members of the Pleiades from
the uvbyβ analysis of David et al. (2014, in prep.). Each
of these points have had an individual v sin i rotation
correction factor applied to them to account for the rota-
tion and inclination effects discussed above. These points
show good agreement with the solar metallicity 100 Myr
tracks (blue dotted curve), appropriate for Pleiades-age

objects.
By combining the spectroscopically-constrained pa-

rameters Teff and log(g) alone, and comparing the val-
ues to modern stellar evolutionary models, we infer that
the age of κ And is almost certainly in the range ∼50-
400 Myr. The well-constrained combination of Teff and
log(g) estimated by Fitzpatrick & Massa (2005) for κ
And A is consistent with age ∼300 Myr for subsolar
composition ([M/H] = -0.36) and age ∼180 Myr for so-
lar composition. Using the rotating and non-rotating
tracks of Ekström et al. (2012), one finds the spectro-
scopic parameters of Fitzpatrick & Massa (2005) for κ
And A consistent with ages of ∼220 Myr and ∼200 Myr,
respectively. We conclude that the combination of Teff

and log(g) for κ And are consistent with an isochronal
age of ∼200 Myr, however it may be as old as ∼300 Myr
if the star is indeed metal poor. As we show in the next
section, these age estimates are commensurate with that
inferred through comparison of the HR diagram position
to evolutionary tracks.

3.2.3. Luminosity vs. Teff Analysis

In Figure 10, we plot the HR diagram position for κ
And (adopting the Teff from Fitzpatrick & Massa (2005),
with the revised luminosity from § 3.1 along with evolu-
tionary tracks and isochrones from Bertelli et al. (2009)
assuming approximately protosolar composition (Y =
0.27, Z = 0.017). Sampling within the Teffand luminos-
ity uncertainties using Gaussian deviates, we find that
the HR diagram position is consistent with an age of
140± 17 Myr and mass 2.89± 0.03 M⊙. Adopting the
Bertelli et al. (2009) tracks for a slightly lower (yet plau-
sible) helium mass fraction (Y = 0.26, Z = 0.017), the
HR diagram point is consistent with age 139± 17 Myr
(2.90± 0.03 M⊙). If we decrease the metal fraction by

The mass of Kappa Andromeda

Discovery paper, young (∼ 50 Myrs)
moving group, mass ∼ 12 MJup .

Second look: moving group
membership not so convincing, star too
bright to be young. Revised age ∼ 200
Myrs, mass ∼ 30 MJup .

Third look: it turns out that Kappa
And is a pole on fast rotator, which
explains why it is over luminous, back
to ∼ 50 Myrs, ∼ 12 MJup after all!



Key questions Image Formation Data Analysis Astrophysical Noise Recap

Age of stars: an oral story

Hinkley et al. (2013)
10

∆Z = 0.001 (Y = 0.27, Z = 0.016), this shifts the age
slightly older: 152± 16 Myr (2.84± 0.03 M⊙). Lowering
the metal fraction to levels suggested for the proto-Sun
informed by recent observations using 3D solar atmo-
sphere models (e.g. Asplund et al. 2009) (Y = 0.27, Z =
0.014), one would derive 177± 15 Myr (2.79± 0.03 M⊙).
We can also estimate an isochronal age which assumes
that the measured photospheric metallicity is indicative
of the star’s bulk composition ([Fe/H∼-0.36]). We scale
the star’s chemical composition by assuming a linear
trend in ∆Y/∆Z = 1.57, which connects the Big Bang
primordial abundances (Y = 0.248, Z = 0.00; Steigman
2010) with the solar photospheric ratio (X/Z) and pro-
tosolar Y estimated by (Asplund et al. 2009). Adopting
the metallicity from Fitzpatrick & Massa (2005) ([Fe/H]
= -0.36), we interpolate an approximate chemical com-
position of Y = 0.26, Z = 0.006. Using this subsolar
chemical composition, we infer that the HR diagram po-
sition of κ And would be consistent with age 317± 10
Myr and mass 2.52± 0.03 M⊙. Note that this chemical
composition represents almost certainly a strong lower
limit to the plausible helium and metal mass fractions,
and hence defines an upper limit on the star’s age and a
lower limit on its mass.

As a check, we evalulate the HR diagram position of κ
And A using other sets of tracks. Using the Girardi et al.
(2000) evolutionary tracks for [Fe/H] = 0.0± 0.1 via
the online isochrone interpolator PARAM 1.120, we find
that κ And’s HR diagram position21 corresponds to age
252± 33 Myr and mass 2.60± 0.06 M⊙, with surface
gravity log(g) = 4.12± 0.02. Assuming [Fe/H] = 0,
the same tracks yield an age of 121 Myr, mass of 2.85
M⊙ and log(g) = 4.17. Using the rotating evolutionary
tracks from Georgy et al. (2013) for their assumed solar
composition (Z = 0.014) and vrot/vcrit = 0.3, κ And’s age
is approximately 250 Myr for mass 2.75 M⊙. Combining
our estimate of the mass of κ And A (∼2.8 M⊙) with
our updated radius estimate in Table 2 (2.29 R⊙) leads
to an estimate of the star’s critical rotational velocity of
∼480 km s−1, hence for vsini = 150 km s−1(Abt et al.
2002), veq/vcrit > 0.3. Hence, the evolutionary tracks
that include rotation which show slightly older (∼10%)
ages, are probably to be favored.

If the star’s bulk composition is similar to solar (Z
≃ 0.015-0.017), the age is likely to be ∼180± 70 Myr.
If the star’s bulk composition reflects its photospheric
abundances (Z ≃ 0.006), then the star may be of order
∼250± 70 Myr. Hence, there is a systematic uncertainty
in the age at the ∼40% level due to the uncertainty in
the bulk metal fraction of the star. Uncertainties due
to the helium fraction, observational uncertainties, rota-
tion, and other differences between the input physics of
the different stellar evolutionary models, each contribute
to the age uncertainty at the ∼10% level. We conclude
that the HR diagram position for the star is consistent
with an approximate age of 220 ± 100 Myr and mass
2.8+0.1

−0.2 M⊙. The derived isochronal age range from the
HR diagram analysis is commensurate with that from
the Teff vs. log(g) analysis in §3.2.2.

20 http://stev.oapd.inaf.it/cgi-bin/param_1.1
21 Instead of inputting luminosity directly, we entered the

V magnitude and parallax listed in Table 2, along with the
Fitzpatrick & Massa (2005) Teff and metallicity.

Fig. 10.— Theoretical HR diagram position for κ And with
Bertelli et al. (2009) evolutionary tracks for solar composition (Y
= 0.27, Z = 0.017) overlain. The 30 Myr isochrone (log(age/yr)
=7.5) is shown as a thick dashed line. Using these tracks, κ And has
age 140 Myr. Tracks which include rotation and lower metallicity
produce systematically older ages. Taking into account uncertain-
ties in the composition (assuming the star has bulk composition
ranging from [Fe/H]=-0.36 to solar), we estimate an isochronal age
of 220 ± 100 Myr.

Our new estimate of 220± 100 Myr is ∼7× older
than the age estimate presented by Carson et al. (2013).
Based on the combination of Teff , log(g), and luminosity,
an age for κ And A younger than 120 Myr or older than
320 Myr seem extremely unlikely. If the bulk composi-
tion of κ And is truly as metal poor as the photosphere
([Fe/H] ≃ -0.3), then not only is κ And ∼10× older than
the 30 Myr-old Columba association, but its chemical
composition contains less than half the metals of other
Columba members.

With this revised age in hand, we use the DUSTY
models of Chabrier et al. (2000) to estimate the mass
of κ And B. Using the L-band photometry from
Bonnefoy et al. (2013b) with our revised age of 220±100
Myr, we find a revised mass of 50+16

−13 MJup, where the
uncertainty is driven almost entirely by our derived un-
certainty in the age of κ And A.

3.3. Multiplicity

High mass stars show a high degree of multiplicity
(e.g. Duchêne & Kraus 2013, and references therein) and
characterizing the multiplicity of the κ And system, and
hence the contributions to the observed system luminos-
ity, has significant implications for its age (§3.2). An
equal-flux binary companion would significantly bias the
inferred luminosity (§3.1), lowering the log(L/L⊙) value
in Figure 10 by 0.3 dex, placing it near the 30 Myr age
track. Hence, understanding the multiplicity of this sys-
tem is crucial for a correct interpretation of Figure 10.
Further, low-mass binary companions could be useful as
additional age indicators. There have been numerous
observations of κ And with various techniques, but they
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Figure 1. Top: Observed (red circles) and best-fit model visibilities (blue squares) vs. spatial frequencies for the solar metallicity model.
Middle: Observed (red circles) and best-fit model (blue squares) photometric fluxes vs. wavelength for the solar metallicity model. The
modeled SED is shown in gray. Bottom: The photosphere of the best fitting model of  And A. The black points represent a grid of
colatitudes and longitudes on the near side of the model. The blue circles represent a radius fitted to each individual visibility at the
appropriate baseline orientation observed. The data are duplicated at 180� orientation.
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Fig. 3.— Posterior age probability distributions for four Hippar-
cos stars, each with three metallicity priors: [Fe/H] = 0.1 ± 0.05
(red histograms), [Fe/H] = 0 ± 0.05 (blue histograms), and
[Fe/H] = �0.1 ± 0.05 (green histograms). HIP 13209 (third panel)
has a binary companion of unknown spectral type which we neglect
in the isochrone fit. The shaded light blue regions show the moving
group ages of the top three stars. Slightly super-Solar metallicities
allow an excellent match in all cases. HIP 116805’s age is contro-
versial; our analysis suggests that youth cannot be ruled out.

bution. All of our cluster probability distributions pre-
sented below easily pass this test.

5.1. Single Stars

We first apply our isochrone-based analysis to four in-
dividual stars: HIP 27321 (� Pic), 13209, 115738, and
116805 ( And). The first three of these stars are con-
sensus members of the coeval moving groups � Pictoris
(HIP 27321) and AB Doradus (HIP 13209 and 115738).
HIP 116805 is a proposed member of the Columba mov-
ing group, but this identification, and the star’s age, are

controversial. Figure 3 shows the age posterior probabil-
ity distributions for each of these stars for three Gaus-
sian metallicity distributions: [Fe/H] = 0.1 ± 0.05 (red
histograms), [Fe/H] = 0 ± 0.05 (blue histograms), and
[Fe/H] = �0.1 ± 0.05 (green histograms). The shaded
blue regions show the moving group ages. We discuss
each star in turn below.

HIP 27321: The nearby A star � Pictoris hosts a de-
bris disk and a low-mass substellar companion (Lagrange
et al. 2009). It is also the founding member of the � Pic-
toris moving group (Barrado y Navascués et al. 1999;
Zuckerman et al. 2001), whose age has recently been de-
termined to be ⇠20–25 Myr using the lithium depletion
boundary, isochrones with magnetic fields, and kinemat-
ics (Binks & Je↵ries 2014; Malo et al. 2014; Mamajek &
Bell 2014).

HIP 27321 has a measured rotational velocity of ⇠120–
130 km s�1 (Royer et al. 2007; Schröder et al. 2009)
and, while measurements of its metallicity are unreli-
able, we can adopt the chemical composition of lower-
temperature members of the same moving group. HIP
10679 has a spectroscopic [Fe/H] = 0.07 ± 0.03, HIP
10680 has [Fe/H] = 0.09 ± 0.03, and HIP 25486 has
[Fe/H] = 0.29 ± 0.03 (Valenti & Fischer 2005). As
members of the same moving group, these stars should
have nearly identical compositions. The inconsistency
between their spectroscopic metallicities in the same sur-
vey could indicate large systematic errors. The measure-
ments do, however, hint at a slightly super-solar [Fe/H]
for � Pic itself.

The top panel of Figure 3 shows the age posterior prob-
ability distribution for HIP 27321 under three metallicity
priors. The red histogram, [Fe/H] = 0.1 ± 0.05, comes
closest to the metallicities determined for later-type �
Pic members, and correctly indicates a young age for
HIP 27321 itself. The lower limit on the star’s age is an
artifact of our masking of the pre-main sequence.

HIP 115738: HIP 115738 is an ↵2 CVn variable star
and a high-probability member of the AB Doradus mov-
ing group (Zuckerman et al. 2011; Malo et al. 2013;
Gagné et al. 2014), with an age of ⇠100–150 Myr (Luh-
man et al. 2005; Ortega et al. 2007; Barenfeld et al. 2013).
The metallicity of AB Dor is somewhat uncertain, with
measurements of [Fe/H] = 0.02 ± 0.02 (Barenfeld et al.
2013) and [Fe/H] = 0.10±0.03 (Biazzo et al. 2012), from
spectroscopy of later-type members.

Variable stars of ↵2 CVn type are chemically peculiar
with strong metal lines. This could imply a di↵erence
between the metallicity of the star and its atmosphere,
an e↵ect which we ignore. While HIP 115738’s variabil-
ity is a generic problem for any isochrone analyses, the
Tycho photometry is from a stack of 47 measurements
(with a root-mean-square scatter in VT of 0.029 mag).
Stellar variability would be a much larger concern if we
were to include non-simultaneous photometry at other
wavelengths.

HIP 115738’s variability does, in principle, permit a
measurement of the its rotational period. Unfortunately,
there seems to be little agreement on the star’s photo-
metric period among variability surveys, ranging from 2
hours (Rimoldini et al. 2012) to 1.4 days (Wraight et al.
2012). A rotation period of 2 hours is physically impossi-
ble for an A star of ⇠2 R�. An undisputed measurement
of the stellar rotation period would enable us to directly
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Fig. 4.— Posterior probability distribution in age and metallicity
for the Pleiades, measured by fitting six late B stars, HIP 17527,
17588, 17664, 17776, 17862, and 17900, to the stellar models of
Georgy et al. (2013) with (red curves) and without (blue curves)
allowing for a stellar rotation. The cluster’s age has been mea-
sured to be 130 ± 20 Myr using the lithium depletion boundary
(Barrado y Navascués et al. 2004); this interval is shaded light
blue. The Georgy et al. (2013) give a slightly younger age, albeit
still consistent at 1�. There is little di↵erence between the age and
metallicity derived with and without considering rotation. As Fig-
ure 2 shows, the rotating and nonrotating tracks for ⇠2–2.5 M�
stars only separate appreciably at older ages.

the cluster core and is inconsistent with the other stars’
ages. In the case of HIP 76267, we subtract the flux of its
eclipsing binary companion (a G5V star, Tomkin & Pop-
per 1986). HIP 65477 has an M-type companion (Mama-
jek et al. 2010) which is too faint to appreciably a↵ect
its optical flux. We exclude the other early-type UMa
members from King et al. (2003), all of which appear to
be spectroscopic binaries with companions of unknown
spectral type. Four of our five stars, HIP 53910, 59774,
62956, and 65477, are members of the UMa nucleus.

When fitting the ensemble of stars, we assume a Gaus-
sian metallicity prior for the cluster centered on [Fe/H] =
0 with a dispersion of 0.1 dex. We assume the individ-
ual stars to have the (unknown) cluster value. Each in-
dividual star may have its own parallax, rotation and
orientation; we marginalize over all of these parameters
star-by-star. We then multiply the joint posterior prob-
ability distributions in age and metallicity for all stars,
obtaining the results shown in Figure 5. The upper-left
density plot assume all stars to be nonrotating while the
lower-right assumes a Maxwellian prior on ⌦0/⌦crit. The
inner and outer contours enclose 68% and 95% of the
probability, respectively. The dot-dashed curves show
the results if the metallicity prior is a delta function at
[Fe/H] = 0.03.

When using the rotating models, all of the stars are
consistent with one another in their age-metallicity con-
straints; their 1� contours overlap one another. The
derived age is in good agreement with the 500 ± 100

Fig. 5.— Joint posterior probability distribution for the age and
metallicity of five early-type Ursa Majoris moving group members,
with a metallicity prior of [Fe/H] = 0 ± 0.1. Our derived age with
rotation agrees well with ⇠500 estimated by King et al. (2003).
The red dot-dashed curves show the constraints from assuming a
delta-function metallicity prior [Fe/H] = 0.03, the central value
measured from FGK candidate UMa members (Tabernero et al.
2014). When neglecting rotation, the age/metallicity constraints
for HIP 62956 do not agree with the other stars; multiplying the
probability densities yields the implausibly young age and high
metallicity shown.

Myr reported by King et al. (2003). Our isochrone anal-
ysis also favors a very slightly super-Solar metallicity,
in agreement with recent spectroscopic measurements of
later-type members. Tabernero et al. (2014), using a
sample of 44 candidate FGK members, find that 29 of
the 44 stars share a similar chemical composition, with
[Fe/H] = 0.03 ± 0.07 dex. Using a delta function metal-
licity prior at [Fe/H] = 0.03 (dot-dashed red lines) gives
an age of 530 ± 40 Myr (2� formal errors).

The agreement is much worse when neglecting rota-
tion. Much of this is due to HIP 62956: its 1� con-
tour does not overlap those of the other stars in age-
metallicity space. Excluding this star yields good agree-
ment in the nonrotating case at an age of just over 400
Myr, which is still ⇠20% younger than in the rotating
case. Including or excluding HIP 62956 has a negligible
e↵ect on the constraints from rotating stellar models.

5.4. The Hyades Open Cluster

We now revisit the age of the Hyades open cluster, cal-
culated to be 625±50 Myr by Perryman et al. (1998) us-
ing nonrotating isochrones with convective overshooting.
The Perryman et al. (1998) constraint is based mostly on
five stars near the main-sequence turno↵ without indica-
tions of multiplicity: HIP 20542, 20635, 21029, 21683,
and 23497. Reddening between the Sun and the Hyades
is negligible (Taylor 2006). We use the same five stars in
our present framework to place new constraints on the
Hyades age, adopting a metallicity of [Fe/H] = 0.10 (Tay-
lor & Joner 2005) with a conservative Gaussian error of
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Fig. 4.— Posterior probability distribution in age and metallicity
for the Pleiades, measured by fitting six late B stars, HIP 17527,
17588, 17664, 17776, 17862, and 17900, to the stellar models of
Georgy et al. (2013) with (red curves) and without (blue curves)
allowing for a stellar rotation. The cluster’s age has been mea-
sured to be 130 ± 20 Myr using the lithium depletion boundary
(Barrado y Navascués et al. 2004); this interval is shaded light
blue. The Georgy et al. (2013) give a slightly younger age, albeit
still consistent at 1�. There is little di↵erence between the age and
metallicity derived with and without considering rotation. As Fig-
ure 2 shows, the rotating and nonrotating tracks for ⇠2–2.5 M�
stars only separate appreciably at older ages.

the cluster core and is inconsistent with the other stars’
ages. In the case of HIP 76267, we subtract the flux of its
eclipsing binary companion (a G5V star, Tomkin & Pop-
per 1986). HIP 65477 has an M-type companion (Mama-
jek et al. 2010) which is too faint to appreciably a↵ect
its optical flux. We exclude the other early-type UMa
members from King et al. (2003), all of which appear to
be spectroscopic binaries with companions of unknown
spectral type. Four of our five stars, HIP 53910, 59774,
62956, and 65477, are members of the UMa nucleus.

When fitting the ensemble of stars, we assume a Gaus-
sian metallicity prior for the cluster centered on [Fe/H] =
0 with a dispersion of 0.1 dex. We assume the individ-
ual stars to have the (unknown) cluster value. Each in-
dividual star may have its own parallax, rotation and
orientation; we marginalize over all of these parameters
star-by-star. We then multiply the joint posterior prob-
ability distributions in age and metallicity for all stars,
obtaining the results shown in Figure 5. The upper-left
density plot assume all stars to be nonrotating while the
lower-right assumes a Maxwellian prior on ⌦0/⌦crit. The
inner and outer contours enclose 68% and 95% of the
probability, respectively. The dot-dashed curves show
the results if the metallicity prior is a delta function at
[Fe/H] = 0.03.

When using the rotating models, all of the stars are
consistent with one another in their age-metallicity con-
straints; their 1� contours overlap one another. The
derived age is in good agreement with the 500 ± 100

Fig. 5.— Joint posterior probability distribution for the age and
metallicity of five early-type Ursa Majoris moving group members,
with a metallicity prior of [Fe/H] = 0 ± 0.1. Our derived age with
rotation agrees well with ⇠500 estimated by King et al. (2003).
The red dot-dashed curves show the constraints from assuming a
delta-function metallicity prior [Fe/H] = 0.03, the central value
measured from FGK candidate UMa members (Tabernero et al.
2014). When neglecting rotation, the age/metallicity constraints
for HIP 62956 do not agree with the other stars; multiplying the
probability densities yields the implausibly young age and high
metallicity shown.

Myr reported by King et al. (2003). Our isochrone anal-
ysis also favors a very slightly super-Solar metallicity,
in agreement with recent spectroscopic measurements of
later-type members. Tabernero et al. (2014), using a
sample of 44 candidate FGK members, find that 29 of
the 44 stars share a similar chemical composition, with
[Fe/H] = 0.03 ± 0.07 dex. Using a delta function metal-
licity prior at [Fe/H] = 0.03 (dot-dashed red lines) gives
an age of 530 ± 40 Myr (2� formal errors).

The agreement is much worse when neglecting rota-
tion. Much of this is due to HIP 62956: its 1� con-
tour does not overlap those of the other stars in age-
metallicity space. Excluding this star yields good agree-
ment in the nonrotating case at an age of just over 400
Myr, which is still ⇠20% younger than in the rotating
case. Including or excluding HIP 62956 has a negligible
e↵ect on the constraints from rotating stellar models.

5.4. The Hyades Open Cluster

We now revisit the age of the Hyades open cluster, cal-
culated to be 625±50 Myr by Perryman et al. (1998) us-
ing nonrotating isochrones with convective overshooting.
The Perryman et al. (1998) constraint is based mostly on
five stars near the main-sequence turno↵ without indica-
tions of multiplicity: HIP 20542, 20635, 21029, 21683,
and 23497. Reddening between the Sun and the Hyades
is negligible (Taylor 2006). We use the same five stars in
our present framework to place new constraints on the
Hyades age, adopting a metallicity of [Fe/H] = 0.10 (Tay-
lor & Joner 2005) with a conservative Gaussian error of

Baysian moving group membership. Gagne
et al. (2015)

13

Fig. 12.— The UVWXYZ velocities and positions for the 20 bona
fide Columba members (open circles) listed in Malo et al. (2013)
while the filled (orange) symbol indicates the κ And system. While
the UVW values for κ And are in agreement with those for the
Columba group, it has the largest Y position of the group.

pc away from the centroid of Columba, and its velocity
differs by 1.5 km/s. Using an epicycle orbit approxima-
tion code, it appears that κ And was only slightly closer
to the Columba centroid in the past: 18 Myr ago it was
60 pc from Columba, and 30 Myr ago it was 74 pc from
Columba.

However, the outlying Y position of κ And (46.5pc)
raises questions about the likelihood of its formation near
the Columba groups centroid (Y =-31.3). Notably, for κ
And to have formed near Columba’s centroid 30 Myr
ago, it would have had to inherited a peculiar V velocity
of ∆V = (46.5 + 31.3pc)/(30 Myr) = 2.59 pc/Myr ∼
2.6 km/s. Given Columba’s current V velocity of V =-
21.3, a “runaway” star would have velocity V + ∆V ≃
-18.7 km/s. However, this is still within ∼1σ of what is
observed for κ And.

4. SUMMARY

In this work we have presented analysis of the spec-
tra and photometry of the companion κ And B, as well
as presented a comprehensive analysis of the age, multi-
plicity, and moving group kinematics of the κ And AB
system. We summarize our results as follows:

• Y JH-band low resolution spectra obtained
through high contrast imaging with Project 1640
are consistent with an intermediate age (!300
Myr) brown dwarf with L1±1 spectral type,
although similiarities with field mid-L objects are
present.

• By fitting synthetic models to the Project 1640
spectrophotometry, we constrain the surface grav-
ity and effective temperature of κ And B to be
log(g)=4.33+0.88

−0.79 and Teff=2040K+58
−64, respectively.

• Comparing these photospheric properties to the-
oretical isochrones in log(g) and Teff parameter
space indicates an age much older than the 30 Myr
age reported previously for κ And B.

• Previously published log(g) and Teff values for κ
And A are compared to theoretical isochrones, indi-
cating ages of ∼100-300 Myr. The HR diagram po-
sition of κ And A is consistent with the same age for
a range of assumed chemical compositions. Taken
together, the stellar parameters are consistent with
an isochronal age of 220± 100 Myr, where the age
uncertainty is dominated by the star’s chemical
composition.

• We combine aperture masking interferometry,
archival radial velocity data from the literature,
and archival multi-epoch imaging of κ And A to
rule out any faint stellar companions beyond ∼0.6
AU (Figures 11 and 13) that could be causing the
star to be overluminous for the originally-quoted 30
Myr age. In addition, we show that a nearly “pole-
on” viewing angle coupled with extremely rapid ro-
tation is unlikely to be the configuration contribut-
ing to this star’s overluminosity.

• κ And A appears to be a kinematic outlier com-
pared to other Columba members. While the ve-
locity of κ And is consistent with that of other
Columba members, its Galactic Y position is an
outlier. Taken together with its overluminosity and
low surface gravity expected for a 30 Myr old, late-
B star, κ And is most likely an interloper to the
Columba association.

• Through the use of Hertzsprung-Russell diagram
analysis as well as comparison of the log(g) and
Teff parameters for κ And A with theoretical
isochrones, we have shown that the star has an age
closer to 220 Myr than the originally assumed 30
Myr based on association with Columba. These
ages indicate that the mass of κ And B is 50+16

−13
MJup, rather than the previously claimed 12-14
Jupiter Masses.
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Fig. 4.— Posterior probability distribution in age and metallicity
for the Pleiades, measured by fitting six late B stars, HIP 17527,
17588, 17664, 17776, 17862, and 17900, to the stellar models of
Georgy et al. (2013) with (red curves) and without (blue curves)
allowing for a stellar rotation. The cluster’s age has been mea-
sured to be 130 ± 20 Myr using the lithium depletion boundary
(Barrado y Navascués et al. 2004); this interval is shaded light
blue. The Georgy et al. (2013) give a slightly younger age, albeit
still consistent at 1�. There is little di↵erence between the age and
metallicity derived with and without considering rotation. As Fig-
ure 2 shows, the rotating and nonrotating tracks for ⇠2–2.5 M�
stars only separate appreciably at older ages.

the cluster core and is inconsistent with the other stars’
ages. In the case of HIP 76267, we subtract the flux of its
eclipsing binary companion (a G5V star, Tomkin & Pop-
per 1986). HIP 65477 has an M-type companion (Mama-
jek et al. 2010) which is too faint to appreciably a↵ect
its optical flux. We exclude the other early-type UMa
members from King et al. (2003), all of which appear to
be spectroscopic binaries with companions of unknown
spectral type. Four of our five stars, HIP 53910, 59774,
62956, and 65477, are members of the UMa nucleus.

When fitting the ensemble of stars, we assume a Gaus-
sian metallicity prior for the cluster centered on [Fe/H] =
0 with a dispersion of 0.1 dex. We assume the individ-
ual stars to have the (unknown) cluster value. Each in-
dividual star may have its own parallax, rotation and
orientation; we marginalize over all of these parameters
star-by-star. We then multiply the joint posterior prob-
ability distributions in age and metallicity for all stars,
obtaining the results shown in Figure 5. The upper-left
density plot assume all stars to be nonrotating while the
lower-right assumes a Maxwellian prior on ⌦0/⌦crit. The
inner and outer contours enclose 68% and 95% of the
probability, respectively. The dot-dashed curves show
the results if the metallicity prior is a delta function at
[Fe/H] = 0.03.

When using the rotating models, all of the stars are
consistent with one another in their age-metallicity con-
straints; their 1� contours overlap one another. The
derived age is in good agreement with the 500 ± 100

Fig. 5.— Joint posterior probability distribution for the age and
metallicity of five early-type Ursa Majoris moving group members,
with a metallicity prior of [Fe/H] = 0 ± 0.1. Our derived age with
rotation agrees well with ⇠500 estimated by King et al. (2003).
The red dot-dashed curves show the constraints from assuming a
delta-function metallicity prior [Fe/H] = 0.03, the central value
measured from FGK candidate UMa members (Tabernero et al.
2014). When neglecting rotation, the age/metallicity constraints
for HIP 62956 do not agree with the other stars; multiplying the
probability densities yields the implausibly young age and high
metallicity shown.

Myr reported by King et al. (2003). Our isochrone anal-
ysis also favors a very slightly super-Solar metallicity,
in agreement with recent spectroscopic measurements of
later-type members. Tabernero et al. (2014), using a
sample of 44 candidate FGK members, find that 29 of
the 44 stars share a similar chemical composition, with
[Fe/H] = 0.03 ± 0.07 dex. Using a delta function metal-
licity prior at [Fe/H] = 0.03 (dot-dashed red lines) gives
an age of 530 ± 40 Myr (2� formal errors).

The agreement is much worse when neglecting rota-
tion. Much of this is due to HIP 62956: its 1� con-
tour does not overlap those of the other stars in age-
metallicity space. Excluding this star yields good agree-
ment in the nonrotating case at an age of just over 400
Myr, which is still ⇠20% younger than in the rotating
case. Including or excluding HIP 62956 has a negligible
e↵ect on the constraints from rotating stellar models.

5.4. The Hyades Open Cluster

We now revisit the age of the Hyades open cluster, cal-
culated to be 625±50 Myr by Perryman et al. (1998) us-
ing nonrotating isochrones with convective overshooting.
The Perryman et al. (1998) constraint is based mostly on
five stars near the main-sequence turno↵ without indica-
tions of multiplicity: HIP 20542, 20635, 21029, 21683,
and 23497. Reddening between the Sun and the Hyades
is negligible (Taylor 2006). We use the same five stars in
our present framework to place new constraints on the
Hyades age, adopting a metallicity of [Fe/H] = 0.10 (Tay-
lor & Joner 2005) with a conservative Gaussian error of

Baysian moving group membership. Gagne
et al. (2015)
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Recap

Know your noise!

Methods to mitigate astrophysical noise are somewhat more “modern”
than for instrument noise.

This is because we know more about the universe than about speckles.

There is a lot of room for growth in the data analysis domain.

Key things to watch out for the future

GPI and SPHERE (as instruments) are just starting. They are beautiful
planet characterization machines.

Solve the million dollar problem: reconcile RV and direct imaging Jupiter
analog occurrence rates? Do we need deeper contrast? Do we need better
angular resolution (... and wait for ELTs)?

The possibility of obtaining short exposures times might completely
change this story.

JWST data might completely challenge the way we thing about the
instrument noise.

Properly handling astrophysical noise will be critical for WFIRST.
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