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Key questions

[ 1o}

The example of 51 Eri b with the Gemini Planet Imager

Images in multiple bands, Macintosh et al, 2015

GPI/H—band GPI/J—band NIRC2/L'—band

How do we make blobs appear? How do we decide a blob might be a
planet?
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The example of 51 Eri b with the Gemini Planet Imager

Spectrum, Macintosh et al, 2015
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How do we get a spectrum?

15 16
Wavelength (um)

1.7



Key questions
[ 1o}

The example of 51 Eri b with the Gemini Planet Imager

Orbit, mass?, De Rosa et al, 2015
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How do we carry out precise astrometric measurements?
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@ High-contrast image formation theory.

@ High-contrast data analysis.
@ Handling astrophysical noise.
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Fourier Transforms
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Fourier Transforms

Let us denote O(a) the irradiance distribution from the object as a
function of the direction o« on the sky. I{a) will be the observed
irradiance distribution, in the instantaneous image, as a function of the
same variable a. A long exposure image will be considered as the
ensemble average (I(e)). Since astronomical objects are entirely incoher-
ent, the relation between (I{(a)) and O(a) is linear. We shall moreover
assume that it is shift invariant, i.c. the telescope is isoplanatic and the
average effect of turbulence is the same all over the telescope field of
view. In such a case, {I(a)) is related to O(«) by a convolution relation

{He)) = O(e) =(S(a)) 4.1

‘the point spread function (S(a)) being the average image of a point
source. -

We shall define the two-dimensional complex Fourier transform I(y) of
I{a) as

()= Jda - I(a) s exp (2ima - f) 4.2)

with similar relations for the Fourier transform O and § of O and S. In
these expressions the spatial frequency vector # has the dimension of the
inverse of the angle « and must therefore be expressed in radian™. With
such a definition, (4.1) becomes, in the Fourier space

TM=0( -5 “4.3)

where (§(/)) is the optical transfer function of the whole system, tele-
scope and atmosphere
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Fourier Transforms

chromatic point source, of wavelength A. Again, we shall denote ¥y(x) as
the complex amplitude at the telescope aperture. The complex amplitude
HA(e) diffracted at an angle « in the telescope focal plane is proportional
to

() « J‘.dx - Wo(x)Po(x) exp (= 2ima - x/N) (4.4)

where Po(x) is the transmission function of the telescope aperture. For an
ideal diffraction-limited telescope,

1 inside the aperture

Py(x)= { .5)

0 outside the aperture.

In the case of aberrated optics, wavefront errors are introduced as an
argument of the complex transmission Py(x).

In the following, we shall make extensive use of the non-dimensional
reduced variable .
u=x/A. (4.6)
Let us call

V()= Wo(Au) and P(u)= Py(Au). 4.7)

With such notation (4.4) becomes B

() <« F[Pu) - P)] 4.8)
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Fourier Transforms

where & is the complex Fourier transform defined by (4.2). The point
spread function is the irradiance diffracted in the direction «

S(a)=|st(@) < |F @ P()] . 4.9

Its Fourier transform is given by the autocorrelation function of ¥ (u) P (u)

S(y) Jd" . ‘I’(u)lI”:’(ujl—/)P(u)P*(u+f). (4.10)

In the absence of any turbulence, we assume that ¥(u) =1 (§ 3) so that,
normalising §(,/) to-unity at the origin,

.§(/)=9’"Jdu-P(u)P*(u+/)=T(/) 4.11)

where & is the pupil area (in wavelength squared units). Eq. (4.11) is the
classical expression for the optical transfer function T(/) of a telescope.
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Fourier Transforms

In the presence of turbulence (4.11) becomes
StH=9" Jdu - W) PHu+ PP+ /) 4.12)
and the optical transfer function for long exposures is
Siyn=9" J dul¥ () - ¥*u+ /NP P*u+ /). (4.13)

In (4.13) appears the second order moment -
B(y)=(¥() - ¥*u+ /)y=Bo(A /) (4.19)

the properties of which have been studied in § 3. Since B(/) depends only
upon ¢, (4.13) can be written, taking (4.11) into account,

S(M=B() - T() (4.15)

showing the fundamental result that, for long exposures, the optical
transfer function of the whole system, telescope and atmosphere, is the
product of the transfer function of the telescope with an atmospheric
transfer function equal to the coherence function B(y).



Image Formation
®000000

Fourier Transforms

Botton Line

@ Main sources of noise = whatever is at the telescope entrance, e.g.
atmospheric turbulence and imperfections on the optics.

@ In direct imaging data their Fourier Transform is the relevant quantity for
noise estimation. For long exposures we care about the Fourier Transform
of the auto-correlation of the errors at the telescope entrance averaged
over time.
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Fourier Transforms

Guyon (2005).
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Botton Line

@ Main sources of noise = whatever is at the telescope entrance, e.g.
atmospheric turbulence and imperfections on the optics.

o If we “broadly” know what they look like, we can predict what the images
will look like.
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Speckles: symmetries

Complex amplitude at the entrance of the coronagraph, assuming no time

variations:
Yo(x) Beamamplitude () exp [iBeampejay (x)]
Yo(x) = [L+ea(x)]explieopp(x)/A]
vo(x) ~ 1+ea(x)+igopp(x)/A ~ea(x)+icopp(x)/A

Beam shape (Amplitude) Beam delay (Phase)
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Speckles: symmetries

Complex amplitude at the entrance of the coronagraph, assuming no time
variations:

wo(x) = [L+ea(x)]explicopp(x)/A]
Vo(x) ~ 14ea(x)+icopp(x)/A ~ ea(x)+icopp(x)/A

Soummer et al. (2008).
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Speckles: symmetries

Complex amplitude at the entrance of the coronagraph, assuming no time
variations:

Wo(x) = [L+ea(x)]explieopp(x)/A]
Vo(x) ~ 14ea(x)+icopp(x)/A ~ ea(x)+icopp(x)/A

Soummer et al. (2008).

Pupil plane focal plane Lyot Stop plane
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Speckles: symmetries

Complex amplitude at the entrance of the coronagraph, assuming no time

variations:
vo(x) = [l+ea(x)]explieopp(x)/A]
vo(x) ~ 1+ea(x)+icopp(x)/A ~ ea(x)+icopp(x)/A

wo(x) ~ scos(%rnx—&—q)) and/dul;/o(u)l//o(u+f)*~8cos(%tnf+¢)
Pueyo et al. (2009).
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Speckles: symmetries

Complex amplitude at the entrance of the coronagraph, assuming no time

variations:
vo(x) = [l+ea(x)]explicopp(x)/A]
Vo(x) ~ 1+ea(x)+icopp(x)/A ~ea(x)+icopp(x)/A

Pueyo et al. (2009).
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Speckles: symmetries

Complex amplitude at the entrance of the coronagraph, assuming no time
variations:

vo(x) = [L+ea(x)]explicopp(x)/A]
Vo(x) ~ 1+ea(x)+icopp(x)/A ~ ea(x)+icopp(x)/A
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Speckles: symmetries

Complex amplitude at the entrance of the coronagraph, assuming no time
variations:

Wo(x) = [L+ea(x)]explieopp(x)/A]
Vo(x) ~ 1+ea(x)+igopp(x)/A ~ ea(x)+igopp(x)/A

Pueyo et al. (2009).
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Speckles: symmetries

Complex amplitude at the entrance of the coronagraph, assuming no time
variations:

vo(x) = [L+ea(x)]explicopp(x)/A]
Vo(x) ~ 1+ea(x)+icopp(x)/A ~ ea(x)+icopp(x)/A

Pueyo and Norman (2013).

ACAD PSF with DM2 correcting for wavefront error Contrast
-19
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Speckles: Temporal evolution

Normalized autocorrelation value

Hinkley et al. (2007).
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Quick derivation of the respective influence of
atmospheric and “quasi-static” (e.g. from
telescope/instrument optics) speckles.
2r
VYo (x) = [eaem(t) +erei(t)] cos(“ 5 nx +¢)
S() = [ du< yo(wvo(u+h) >7,,
~ [G/%\tm'i_z < EAtm» ETel >7‘Exp +...

2
ot < ETels ETel > Tayy ) COS(an-HP)

Rigorous derivation in Perrin et al. (2005).
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Speckles: Temporal evolution
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Speckles: Temporal evolution

Bailey et al. (2016).
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Speckles: Temporal evolution

Bailey et al. (2016).
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@ The atmosphere creates speckles, but they average out into a broad halo.

@ Adaptive Optics performances dictates the shape of this “average halo”.

@ The telescope+instrument speckles are pinned to the AO response.

The telescope+instrument speckles have timescales ranging from exposure
time to observing sequence.
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Speckles: wavelength dependence




PI_beta_pic_cube_scan.mov
Media File (video/quicktime)


Speckles:
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wavelength dependence

chromatic point source, of wavelength A. Again, we shall denote ¥y(x) as
the complex amplitude at the telescope aperture. The complex amplitude
HA(e) diffracted at an angle « in the telescope focal plane is proportional
to

() « J‘.dx - Wo(x)Po(x) exp (= 2ima - x/N) (4.4)

where Po(x) is the transmission function of the telescope aperture. For an
ideal diffraction-limited telescope,

1 inside the aperture

Py(x)= { .5)

0 outside the aperture.

In the case of aberrated optics, wavefront errors are introduced as an
argument of the complex transmission Py(x).

In the following, we shall make extensive use of the non-dimensional
reduced variable .
u=x/A. (4.6)
Let us call

V()= Wo(Au) and P(u)= Py(Au). 4.7)

With such notation (4.4) becomes B

() <« F[Pu) - P)] 4.8)
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Speckles: wavelength dependence

Fourier Plane
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Key morphological properties of speckles

@ Speckles look like planets.

@ Speckles are symmetric (except when they are not).

@ Speckles stretch with wavelength (except when they are not).
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Speckles: wavelength dependence

Krist et al. (2016)
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Key morphological properties of speckles
@ Speckles look like planets.
@ Speckles are symmetric (except when they are not).

@ Speckles stretch with wavelength (except when they are not).




Speckles: statistics

Soummer et al. (2008)

Pupil plane focal plane Lyot Stop plane
-1. -0.5 0.5 1. -0.1-0.05 0.05 0.1 -1. 0.5 0.5 1.
1 1. 0.1 0.1 1 1.
0.5 0.5 .05 0.05 0.5 0.5
— - "
-0.5 -0.5 -0.05 -0.05 _g.5 0.5
-1 1 -0.1 0.1 ) "
-I. -0.5 0 0.5 1. ~0.1-0.05 0 0.05 0.1 io -0.5 0.5 1.




Image Formation
[e]e]ee]e] o)

Speckles: statistics

Soummer et al. (2008)

S(r) ~ N (0, I,). The instantaneous intensity corresponding to the
complex amplitude of equation (12) is simply

1= |50+ o’
— {Re[C0) + 5]} + {Im[C@) + @]}, (15)

where Re and Im denote the real and imaginary_parts. Using the
properties of circular Gaussian distributions, Re[C(r) + S(r)] and
Im[C(r) + S(r)] are independent Gaussian random variables of
the same variance /, /2. We can rewrite the intensity with real and
imaginary terms of variance unity,

= <{Re[\/21;.f(r) +50)] }2

" {lm[\/Ti'(r) } S(r)]}z>:

where Var [Re(\/2ITC@) + 5@)) ] =
)] =

The r.mdom varigble T follows a decentered x* with two de-
grees of freedom, x3(m), with a decentering parameter m = 211,
(Johnson et al. 1995, p. 433). The PDF for I is therefore

(16)

Var [Im(\/21;7C(r) +

P(r) =27 e 2y (7m1,) V>0, a”n

where f,(2) is the regularized confluent hypergeometric function
and oF (; ¢: ) is the confluent hypergeometric function defined as

Finally, the PDF of the intensity / = 1,/2] is
() 7
oy =—""oF (,I,F> (19)

“This expression is equivalent*to the “madified Rician distribution”
derived by Goodman (1975) and used by Cagigal & Canales (1998,
2000) and Canales & Cagigal (1999, 2001):

1 I+1\, (2VIVE
i Ll

This PDF to the well-known negative
density for a fully developed speckle patter (e.g., laser speckle
pattern; Goodman 2000). Finally, the distribution at photon
counting levels can be obtained by performing a Poisson-Mandel
transformation of the high-flux PDF in equation (20). An analytical
expression of this PDF has been given in Aime & Soummer
(2004b).

‘The mean and variance of the intensity can be obtained by sev-
eral ways. A first method (Goodman 1975, 2000) is to express the
mean intensity £(7) and the second-order moment of the intensity
E(I%) as functions of C(r) and S(r). The second-order moment for
the intensiy is the fourth-order moment for the complex ampli-
tude, E(I%) = E((C + S)(C"* + §*))* (omitting the variables r for
clarity), which can be simplified using the properties of Gaussian
distributions. With £(SS"SS* E(SS*)E(SS*) = 212 we ob-
tain £(1%) = 12 + 41,1, + 212 A second method is to derive a
general analytical expression for the moments of the Rician dis-
tribution. This can be obtained cither from the definition of the
moments of equation (20) (Goodman 1975) or by computing the
derivatives of the moment-generating function (Aime & Soummer
2004b). The instantancous intensity in the focal plane (cq. [15])
can be written as

= €O + 5@ + 2Re[C (IS (22)

Since E(S(r)") = E(S(r))* = 0 (circular Gaussian distribution),
the mean intensity is simply the sum of the deterministic dif-
fraction pattem with a halo produced by the average of the
speckles, I, + I, or I, + I, respectively, for direct and corona-
graphic images. The variance also finds a simple analytical ex-
pression, and we have

E() =1 +1.,
of = I} + 211, (23)

The variance associated with phulodcmcnon can be nddcd to this
expression to obtain the total variance 0% + 0j where o}
e the variancs associated with the Poisson stastice =1+
I;. The total variance is therefore

20+ 1+ 1. (24

In the case of direct images, the term /. corresponds to the per-
fect PSF scaled to the SR. In the case of coronagraphic im-
ages, the focal plane intensity is not invariant by translation, and
therefore, it is technically not a trué PSF. However, we use the
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Speckles: statistics

Soummer et al. (2008)
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Speckles: statistics

Courtesy of A. Rajan and the GPI team.
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Speckles: statistics

Pupil plane focal plane Lyot Stop plane
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Key statistical properties of speckles

@ Speckles follow a Modified Rician distribution (long positive tail).

@ Second order moment depends on angular separation and on how well the
coronagraph works.
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Airing of grievances

Key annoying properties of speckles

@ Speckles look like planets.
@ Speckles follow a Modified Rician distribution (long positive tail).

@ Second order moment depends on angular separation, on how well the
coronagraph works and how well the atmosphere averages out.

@ The telescope+instrument speckles have timescales ranging from exposure
time to length of an observing sequence.

The most successful method to analyze direct imaging data so far has
been to build an empirical model of the noise based on the data itself.
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The problem(s)

Assume you have an image in which you are looking for a planet.

T(n) = lhyy(n) +€A(n).
We call y the random state of the telescope-+instrument at the exposure.
The problem we want to solve is to figure out what are the relative

contributions of the light diffracted within the instrument and of an
hypothetical astrophysical signal.

@ We can have a really good model of our instrument.

o We “construct” a really good model of our instrument based on its data
history (science frames+telemetry).

@ We get more realizations of Iy, for which we are sure that there is no
astrophysical signal. We subtract them from T.
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The problem(s)

Assume you have an image in which you are looking for a planet.

T(n) = lhyy(n) +€A(n).
We call y the random state of the telescope-+instrument at the exposure.
The problem we want to solve is to figure out what are the relative

contributions of the light diffracted within the instrument and of an
hypothetical astrophysical signal.

@ We can have a really good model of our instrument.

o We “construct” a really good model of our instrument based on its data
history (science frames+telemetry).

@ We get more realizations of /y, for which we are sure that there is no
astrophysical signal. We subtract them from T.
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Observing strategies

How to get more realizations of the instrument response?

o Take images of other sources.

Target Image
20 40 60 80

T T T T
80

80

eA(n)? = lyo (n) = hy, (n) o

What to watch for:
@ The telescope + instrument must be a0t
very stable.

@ The alignment of the images needs to
be very precise (the star needs to be on |
the same fraction of a pixel).

20 40 60 80
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Observing strategies

How to get more realizations of the instrument response?

o Take images of other sources.

Reference Image
20 40 60 80

T T T T
80

80

eA(n)? = lyo (n) = hy, (n) o

What to watch for:
@ The telescope + instrument must be a0t
very stable.

@ The alignment of the images needs to
be very precise (the star needs to be on |
the same fraction of a pixel).

20 40 60 80
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Observing strategies

How to get more realizations of the instrument response?
@ Take images of other sources.

@ Take images at other wavelengths/telescope orientations.

R(n) = hy(n)+€A(n—3nl,g) or R(n) = ly,(n—38nl, g)+€A(n)

Credit: P. Ingraham and the GPI team



PI_beta_pic_boiling_speckles.mov
Media File (video/quicktime)
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LOCI - KLIP

Sol\l;ilng the least squares Several routes to invert this
roblem:
P @ Tweak set up of the inverse problem
min (geometry, selection of references)

2 o Regularize of the inverse problem (SVD
{):"<T( )~ Rk(n)) } truncation, PCA)
Equivalent to: Image, or part of image K pixels in zone

| |

E[RR]C =T

where E[RR] is the
correlation matrix of the
ensemble of references over
the zone of the image we
chose.

seousialel N

//;_
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LOCI - KLIP

Several routes to invert this

Solving the least squares
problem: o Tweak set up of the inverse problem

(geometry, selection of references)

min ) o Regularize of the inverse problem (SVD

{):n <T(n) _ Rk(n)) } truncation, PCA)

Equivalent to: S

E[RRIC =T :

where E[RR] is the Kiixelsin zone K pixels in zone

correlation matrix of the z I

ensemble of references over g - ™ X -

the zone of the image we o —— I
]

chose. n n E—

N references
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LOCI - KLIP

Solving the least squares

Several routes to invert this

problem: -
@ Tweak set up of the inverse problem
min (geometry, selection of references)
2 @ Regularize of the inverse problem (SVD
T(n)— Re(n)” p. .
{):" ( (n) k(n) } truncation, PCA)
Equivalent to: All possible reference images

Image, or part of image K pixels in zone

E[RRIC=T ; |

1

where E[RR] is the
correlation matrix of the
ensemble of references over
the zone of the image we
chose.

«

i
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LOCI - KLIP

Solving the least squares

Several routes to invert this

problem: -
@ Tweak set up of the inverse problem
min (geometry, selection of references)
2 @ Regularize of the inverse problem (SVD
T(n)— Re(n)” p. .
{):" ( (n) k(n) } truncation, PCA)
Equivalent to: All possible reference images

Image, or part of image K pixels in zone

E[RRIC=T ; |

1

where E[RR] is the
correlation matrix of the
ensemble of references over
the zone of the image we
chose.

«

i
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Solving the least squares
problem:

rf): (T(n-

Equivalent to:

E[RR]IC=T

where E[RR] is the
correlation matrix of the
ensemble of references over
the zone of the image we
chose.

Rk(n))z}.

Several routes to invert this

@ Tweak set up of the inverse problem
(geometry, selection of references)

o Regularize of the inverse problem (SVD
truncation, PCA)

Astrophysical source in
target image

Astrophysical source in refrences

images kept in PSF library

Nog ./ Astrophysical source in refrences
ejected from in PSF library
Not N

HTEN \

Radial motion
of signal xS
across PSF '~

library (SSDI) .. NOX

Azimuthal motion of
\, signal across PSF library

n AN
Urs N\ 2n \ (ADI)
ugs A:‘9 N, N
e(____' Star dr:fovv
N,
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LOCI - KLIP

Solving the least squares
problem: Several routes to invert this

@ Tweak set up of the inverse problem

) (geometry, selection of references)

{Zn (T(”) - Rk(”)) } @ Regularize of the inverse problem (SVD
truncation, PCA)

min

Equivalent to:
K pixels in zone

E[RR]IC=T > | |
e H g
. @

where E[RR] is the 3 = [ | X X

correlation matrix of the 3 L I
| 120

ensemble of references over penalty terms

the zone of the image we N references

chose.



Data Analysis
0O00@000000000000

LOCI - KLIP

Several routes to invert this

Solving the least squares
problem: @ Tweak set up of the inverse problem
(geometry, selection of references)

MM {e) 5 o Regularize of the inverse problem (SVD

{En (T(n)—z/k‘;l Ck Rk(”)) } truncation, PCA)

N references
Equivalent to: !
= i =
. R N BHE
E[RRIC=T e ol e
8 I N
3 ! 3
H ||
where E[RR] is the K oixels i s0me |
. . e s
correlation matrix of the z EE E a5 g !
= |
ensemble of references over g " m g !
i § — :
the zone of the image we & £ |
I ] & !
chose. £ | Npca Modesy

N references Ranked modes
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LOCI - KLIP

Solving the least squares
problem: Several routes to invert this

@ Tweak set up of the inverse problem

5 (geometry, selection of references)

{Zn (T(”) - inl Ck Rk(”)) } @ Regularize of the inverse problem (SVD
truncation, PCA)

mingc,

Equivalent to:

Npca Modes
E[RR]C =T K pixels in zone
[
where E[RR] is the ' :
correlation matrix of the
ensemble of references over K
plxels in zone

the zone of the image we
chose.

sapo\ eadN
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This is where the magic happens

Marois et al. (2008), Marois et al. (2010)
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This is where the magic happens

Marois et al. (2008), Marois et al. (2010)
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This is where the magic happens

Oppenheimer et al. (2013), Pueyo et al. (2015)
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This is where the magic happens

Soummer et al. (2011)
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This is where the magic happens

Rameau et al. (2012)

0.5" = 45.2 AU
o 26//06 cADI

0.5" = 45.2 AU
= 27/06 sADI

0.5" =145.2 AU
——— ' 27/06 Leiden/PCA
. -

0.5" = 45.2 AU
> 27/06 A—LOCI
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False positives and false negatives
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The initial speckles follow Rice statistics, (hopefully) the steps above make
them “"more” Gaussian, Marois et al. (2007).

10°
107" .
10*2 4
f 107t
»‘0*4 4
s \
1075} Y
\ |
\ |
107 Vo
\ N :
A3 L L L
10 15 0 5 10
Pixel Intensity (o)

15
Detection Threshold (g)
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False positives and false negatives

When working at small separations a penalty term needs to be taken into
account to include uncertainties associated with small number statistics when
estimating the empirical variant of the noise, Mawet et al. (2014).

—Normal
t-dist, 11 DOF
t-dist, 5 DOF
t-dist, 3 DOF
--'MR10
—MR1
---MRoO1

Probability (x)
>
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False positives and false negatives

In the case of a detection we care about the False Positive Fraction. In the case
of upper limits we care about the True Positive Fraction, Wahhaj et al. (2015)

T T T T LI A B
1oL | | FPF=FP(FP+TN)

i S 5 FDR=FP/(FP+TP) ]

10l & “  TDR=TPAFP+TP) ]

[ | AN TPF=TP/(FN+TP) ]

> L c } 4

o 0.8 2N a

c - QI AN :

(O] r o ) 1

T 061 =N\ ]

o " : ]

L L ! i

0.4 ! B

0.2F : .

0-0 L 1 1 X ,47L4747;7¥ I L 1 ]

-4 2 0 2 4 6 8 10
Signal Level
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Receiver Operating Characteristic

An “observer”’ convert pixel maps into one

scalar number that measures how the Decision making process

confldenc? in the detfectlon of sngn.al.' @ Pick an algorithm to subtract noise
The Receiver Operating Characteristic of a
and and observer.

given observer illustrates how the FPF and

TPF varies when the decision making

threshold changes. Caucci et al. (2012). observer calculate ROC.

o Figure out optimal threshold on the
ROC to classify date under the
assumption of a given utility function.

@ Based on the noise properties and the

tHot(g | 1p)

A utility function assigns costs:

Sieln),

o False Negative: cost is using telescope
ressources to follow up a “speckle”
while those could be allocated to the

/ » detection a planet that is actually

0 s /3 4 there, around another star.

False alarm rate

£ J o False Positives: cost is the non

E;’ (el ) r d detections of a planet that is actually
£ / / there.

‘él/z

=



Data Analysis
0000000 @00000000

Problem....PSF subtraction algorithms also subtract the signal
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Problem....PSF subtraction algorithms also subtract the signal

The least squares speckles fitting in the presence of signal can be written as:

2
min e {En ([ )+ Aa(o)] = E1C 61+ 54l () + Ag )]
Image, or part of image : K pixels in zone |
+ T
I e
z
B )
+ @
I L — 3
L B s

Contribution of stellar PSF  Contribution of faint signal
[ Stellar PSF Coefficients

[0 Perturbation to coefficients due to faint signal
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Problem....PSF subtraction algorithms also subtract the signal

Solution is to inject a negative model of the signal in the entire observing
sequence and minimize the residuals over a range of hypothetical astrophysical
observables. This can be done in conjunction with any of the algorithms
described before. Marois et al. (2010), Lagrange et al. (2012).

Image, or part of image Kpixels in zone

ay1 Je [apow annebaN

‘leubis pajosjep JO UONEBIO|

Contribution of stellar PSF  Contribution of faint signal
[ stellar PSF Coefficients

[ Perturbation to coefficients due to faint signal
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Problem....PSF subtraction algorithms also subtract the signal

Solution is to inject a negative model of the signal in the entire observing
sequence and minimize the residuals over a range of hypothetical astrophysical
observables. Example of a grid search for astrometry and photometry,
Morzinski et al. (2015).

Parabola fit to x guesses vs. PCA 20 resids, uniforn  Parabola fit to y guesses v. PCA 20 resids, uniforn  Parabola fit to flus guesses vs PCA 20 resids, unifo
1.0] + 1.0]
. . ; .
+ 5
+ 3o
: * £ + +
o O
0.6 npl = 0.4553239 " +/- 0.D0G01 " SNR-FWEM err o SNR-FWHM orr %06
0.5 | SHR-1 Fl!ll I - 0/ 0.50536 pi 0.5] ul—m ery = o/ o 50536 pix 0.5 +/- 0.0586 mag SHR err
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Problem....PSF subtraction algorithms also subtract the signal

Solution is to inject a negative model of the signal in the entire observing
sequence and minimize the residuals over a range of hypothetical astrophysical
observables. Example of an MCMC for astrometry and photometry, Bottom et
al. (2014).

c = @
R
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Problem....PSF subtraction algorithms also subtract the signal

Solution is to inject a negative model of the signal in the entire observing
sequence and minimize the residuals over a range of hypothetical astrophysical
observables.

Main drawbacks

@ The speckle subtraction algorithm has to be used each time around
(involves a matrix inversion).

@ There is no guarantee that the cost-function minimized/likelihood explored
does not feature local minima. One might get stuck in them.

@ In general these are not limiting factors in ”small dimensional
configurations” ( astrometry and photometry = 3 dimensions).

@ This becomes a severe limiting factor when trying to get spectrum
(astrometry and spectrum = 39 dimensions with GPI).
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Fortunately, we can actually predict what will happen

There is a way to write the influence of the astrophysical signal as:

PCA(Speckles + Signal) = PCA(Speckles) + Signal 8 PCA(Speckles)

...and this applies to any algorithm relying on covariances. Pueyo (2016).

Linear Model Horizontal cut Vertical cut

Injected

Raw Data Reduced Data

speckles

Counts
Counts

Aggressive reduction: N = 5, Ny = 4, Ncorr = 50, Kkiip = 50, Ns = 0.6.
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Fortunately, we can actually predict what will happen

There is a way to write the influence of the astrophysical signal as:

PCA(Speckles + Signal) = PCA(Speckles) + Signal 6 PCA(Speckles)

...and this applies to any algorithm relying on covariances. Pueyo (2016).

Linear Model

Reduced Data

Raw Data

Horizontal cut

Vertical cut

ce as bright as speckles

Counts

Counts
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Fortunately, we can actually predict what will happen

There is a way to write the influence of the astrophysical signal as:
PCA(Speckles + Signal) = PCA(Speckles) + Signal 6 PCA(Speckles)

...and this applies to any algorithm relying on covariances. Pueyo (2016).

Linear Model Horizontal cut Vertical cut

Reduced Data

Raw Data

Counts
Counts

Non aggressive reduction: N, = 5, Ny =4, Neorr = 30, Kkiip = 30, N5 = 1.
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Fortunately, we can actually predict what will happen

There is a way to write the influence of the astrophysical signal as:

PCA(Speckles + Signal) = PCA(Speckles) + Signal 6 PCA(Speckles)
...and this applies to any algorithm relying on covariances. Pueyo (2016).
Linear Model

Raw Data Reduced Data Horizontal cut Vertical cut

Point Source 4 x fainter than speckles

>~

-
! |
e I g
g ul c
= N i | 3
o Ik 1l g
& |‘f‘_‘ﬁ # g IH: O
s Y
. L
< Voo
g i
T !
‘>:§ ¥X

Aggressive reduction: N; = 5, Ny =4, Ngorr = 50, Kkiip = 50, N5 = 0.6.
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Fortunately, we can actually predict what will happen

There is a way to write the influence of the astrophysical signal as:

PCA(Speckles + Signal) = PCA(Speckles) + Signal 6 PCA(Speckles)
...and this applies to any algorithm relying on covariances. Pueyo (2016).

Raw Data Reduced Data Linear Model

Point Source 4 x fainter than speckle

Horizontal cut Vertical cut

Counts
Counts

Vertical Cut

Aggressive reduction: Ny = 5, N, = 4, Ngorr = 50, Kxnip = 50, N; = 0.6.

The linear model works:

o If the astrophysical source is faint when compared to the speckles.

o If the astrophysical source as bright as the speckles/brighter, and the
algorithm parameters are chosen accordingly (not too aggressive).




Data Analysis
000000000 e000000

What does it mean?

Yi(x) = Zk(x) + €A Z,(x) . We can rank them in order of |[eAZ,(x)/Zk(x)||.

Three main terms:

@ over-subtraction: unperturbed o1l
Principal Components Zj(x). Scales as
1Zk(x)[] = 1.

@ direct self-subtraction: presence of an
astrophysical source at various
parallactic angles and wavelengths in
the observing sequence multiplied by
LOCI coefficient. Scales as €/+/A.

@ indirect self-subtraction: perturbation
in the LOCI coefficient. Scales as
S/Ak.

Normalized residual variance

100}
0

KLIP truncation

V.

As Kyjip(e.g A decreases) then self-subtraction becomes more and more
dominant... estimation of astrophysical observables becomes increasingly
complicated.
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Application to spectral extraction

Injected vs extracted spectrum

0.020} A ]
-2/
Injected spectrum ///// S \\
) \\\\
I/ »7// "\ N
’/// A
i
0.015 . ’/’j
i /-
~/if 7
1= 7
5 0.010 Y
>
©
P
=
fe]
=
& 0.005 1
x
=
[T
0.000
Extracted spectrum as a
function of PCA order
—-0.005 ]

0 5 10 15 20 25 30 35
Spectral Channel
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Application to spectral extraction

Injected vs extracted spectrum

0.030f° ]
f
0.025 ‘w"l
i
Injected spectrum 1 .:
2 0.020 ,‘ “
S 1.
! ! "
> 0.015 A L
© i
e Y s L
2 A NS Y A
é 0.010 \V” "’\ﬁ\ ," s
x i) i
= 4 Y i 4
L 0.005 / “ == . WA i f,/{’
N : ke : AL %7 Extracted spectrum as a Nea? |
0.000 \Y/ 2 = 3 function of PCA order Nz
¥ \ »\‘/\ \\,/,
~0.005}
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Application to spectral extraction

Flux (arbitray units)

Injected vs extracted spectrum

0.030

0.025

0.020

Level of noise

0 5 10

15 20 25
Spectral Channel
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Application to spectral extraction

Injected vs extracted spectrum

T
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Injected spectrum i
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Application to spectral extraction

Injected vs extracted spectrum

0.030
0.025
@ Injected spectrum
£ 0020
=}
>
g 0015 A
5 AR
€ o010 . ‘
x \
= /
* 0.005
Extracted spectrum as a
function of PCA order
0.000
—-0.005¢ ]
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Spectral Channel
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Application to spectral extraction

Application: ,6
YJHK Spectrum of B Picb

Multi-band spectrum of Beta Picb
using latest calibration methods
g 6 i 3 i
2 1
P T ki
L] i -
= "'u‘iwl\l !
& |
2./l
M |’ ||
0
——"Best it Spex BD: 2WASS J05361998-122039 «— |ow-gravity and young
[ (Faherty et al. 2013)
2 15 20 25
A um

Chilcote, Pueyo, De Rosa, et al. In prep.
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Wang et al.

Data
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Data

2013-11-16
K2-Band

Y (pixle

024681012
Data

12
10
a1z % 3
HBuwd £ §
=2
0

024681012
Data

16
Data

510

2015-04-02
H-Band

0
0216

Data

510

246 810
Data

2016-01-21
H-Band

0
0123456
X (pixels)

Best Fit Model

1

021681012

Bn\l Fit Model

mn
6
i
2
0

@
Z o

2468

Bn»-.l Fit \lmlvl

216810

Bn\\l Fit Model

16810

@

n—‘

st

01234

X (pixels)

Fit Model

Residuals

12
10
8
6
1
2
0

024681012
Residuals

12.

0
024681012
Residuals

10
4».

0246810

Residuals
1“.
0l

0246810
Residuals
I).
0
0246810
Residuals

n.

01231456
X (pixels)

G

ants (DN)



00000000000 e0000

£z [z Ga o Gy G
%, Np. Cp. Yop, Dy W
A A A

o (spx1d) g

Wang et al. (2016).

>
-
(]
S
o
pal
-
[}
T
[e]
o
c
.0
o
©
=
o
o
<




Data Analysis
00000000000 e0000

Application to astrometry

Wang et al. (2016).

0.6
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Application to astrometry

Wang et al. (2016).
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Application to planet detection

Synthetic point source (triangular spectrum) in GPI J band data

Point source 4 x fainter than speckles

ard Modeling for the detection problem

i 001 @ Forward Modeling does not change the
£ e b False Positive Fraction (= d h
& 00054{’@. ) alse Positive Fraction (7 oes not change
€ the post KLIP speckles statistics).
o 4

o Forward Modeling changes the True

SR 720 ]

- 5 1.30 1.3 e . _
ogram of flux in "blue Histogram of flux in "red i Positive Fraction (— does Change the post
channels" chapnels" i o
KLIP + Apefture T PPN KLIP astrophysical flux). )
o Point / ‘Apertur
ry
Bpsiihaly Receiver Operating Characteristic for

Source / \

//\ § Point / i - point sources 4 x fainter than speckles
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// \\ ‘ / )( Source
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Application to planet detection

Synthetic point source (triangular spectrum) in GPI J band data

°

Point squrce a brightas

ard Modeling for the detection problem

0.
;o ] @ Forward Modeling does not change the
50 False Positive Fraction (= does not change
2o the post KLIP speckles statistics).

0.01-4

o Forward Modeling changes the True
Positive Fraction (= does change the post

1.25 130 135 |
Histogram of flux in "red |
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Application to planet detection

Ruffio et al., in prep.

Classic KLIP FMMF

VS.

Fake Planets
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Application to planet detection

Ruffio et al., in prep.

- FMMF improves the SNR

[a—y
[N}

Ry
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Signal-to-Noise Ratio
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Application to planet detection

Ruffio et al., in prep.

ROC for Different Metrics

o\
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Application to planet detection

Ruffio et al., in prep.

Threshold

)
.9
o

&

? .
e 9, Construction of a
| ROC curve

|

%
%

Signal-to-Noise Ratio
The (ROQ)
indicates the cost of a true detection in term
of false positives. It is the right tool to
compare detection metrics.

from different metrics should
be drawn at the same false positive rate,
which is not necessarily 50.
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Contrast curves and completeness

Macintosh et al. (2015)

How are survey results presented

‘ ‘ @ Pick the "right” contrast curve for

v ; :
104 Y P S0 v <1 Tor e — — F each star. Delta mag vs separation.
Keck 45 min -----
o Convert into Mass vs SMA using your
g favorite model for mass-luminosity and
€ 10% i . .
g Monte Carlo simulations to explore all
© . .
g possible orbits.
3
© q0° o o Convert into Mass vs SMA using your
favorite model for mass-luminosity and
107 analytical propagation of priors.

. . .
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Radius (arcseconds) @ Sum over all stars in survey.
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Contrast curves and completeness

Threshold How are survey results presented

11 . w "

v A *% Construction of a o Pick the “right” contrast curve for
1/ %, ROC curve each star. Delta mag vs separation.
1 ®

@ Convert into Mass vs SMA using your

1 Signal-to-Noise Ratio favorite model for mass-luminosity and
The (ROC) Monte Carlo simulations to explore all
indicates the cost of a true detection in term possible orbits.
of false positives. It is the right tool to
compare detection metrics.

from different metrics should

be drawn at the same false positive rate,
which is not necessarily 50. @ Sum over all stars in survey.

@ Convert into Mass vs SMA using your
favorite model for mass-luminosity and
analytical propagation of priors.
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nd completeness

Wahhaj et al. (2013)

v HR9 —— |
10 | 49Cet ——
o 1 HD 17848 ———
& | HD 53143 i
£ \ HD 107146 - - - - - - -
< W HR4796A ——— 1
» 12 v b
© i |
€ N HR 7329
S [ v HD 182681, H-band - - - - - - - 1
> r S HD 196544 - ------ 1
2 141 5893, H-band - - -----
c L
2
o L
Té_ L
g 16
2 [ =
8 [ T ]
18 ) b
| Targets with 5:1 <=H <5.8 ]
v b b b e by
1 2 3 4 5

separation (arcseconds)

w are survey results presented

@ Pick the “right” contrast curve for
each star. Delta mag vs separation.

@ Convert into Mass vs SMA using your
favorite model for mass-luminosity and
Monte Carlo simulations to explore all
possible orbits.

o Convert into Mass vs SMA using your
favorite model for mass-luminosity and
analytical propagation of priors.

@ Sum over all stars in survey.
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Contrast curves and completeness

Savransky et al. (2010)

s How are survey results presented

@ Pick the “right” contrast curve for
each star. Delta mag vs separation.

o Convert into Mass vs SMA using your
favorite model for mass-luminosity and
Monte Carlo simulations to explore all
possible orbits.

@ Convert into Mass vs SMA using your
favorite model for mass-luminosity and
analytical propagation of priors.

@ Sum over all stars in survey.
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Contrast curves and completeness

Brandt et al. (2014)

How are survey results presented

o Pick the “right” contrast curve for
each star. Delta mag vs separation.

o Convert into Mass vs SMA using your
favorite model for mass-luminosity and
Monte Carlo simulations to explore all
possible orbits.

“lcrsodb

Companion Mass (M)

— o Convert into Mass vs SMA using your
3r g=-0.65 favorite model for mass-luminosity and
=-0.85 s . .
3 ami* 1000 AUT analytical propagation of priors.
M., =5 M, .
i ‘ o o @ Sum over all stars in survey.
10 100 1000 ’

Projected Separation (AU)
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Other methods

Moving forward with data analysis

By and large most of the community is using “blind” Principal Component
Analysis to analyze high-contrast imaging data. This is an ancient method!
There is room to do better:

@ Use correlation between telemetry and images (Vogt et al., 2010).

@ Use the images (and maybe telemetry) a physical model of the complex
field at the telescope entrance (Ygouf et al., 2012).

@ Give up on the L2 norm (L1 norm?).

@ Use only positive modes and positive coefficients (Non Negative Matrix
Factorization).

@ “Track” the motion of the planet in the data (low rank sparse
decomposition, LLSG, Gomez et al., 2016).
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Astrophysical false positives




Common proper motion for physical association
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Combine proper motion and parallactic motion to establish physical
association. Rameau et al. (2013), Mawet et al. (2012)
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Common proper motion for physical association

Combine proper motion and parallactic motion to establish physical
association. Rameau et al. (2013), Mawet et al. (2012)
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Speeding the process up

@ This used to be a waiting game: proper and parallactic motion need to be
larger than uncertainty in astrometry.

@ Smaller error bars for astrometry do certainly help.
@ How to use MCMC to speed things up?
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Common proper motion for physical association

De Rosa et al. (2015)
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Common proper motion for physical association

De Rosa et al. (2015)
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Speeding the process up

@ This used to be a waiting game: proper and parallactic motion need to be
larger than uncertainty in astrometry.

@ Smaller error bars for astrometry do certainly help.

@ The “astrophysical noise” hypothesis can also be fitted for.
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More information always helps

Gagne et al. (2015)

T T T T T 1
- %
8 | ¢+ Field 4 4
o oo Young o9% 2M0019+4614 1
> » > Young objects of interest .89%00 / ]
N s
10 | Field T5-T6 ° .o" . §
Yréréc AB Doradus members obe ‘g °9 2M00 24405 J
CD 352722 B J
‘3f AB Pic b ]
L s X JO 19b i
12 ﬁ o $ 2M1425 3650 |
iy 2M0355+11
' 2M0602+391w‘ sat oM 122?( 1
> L " o L S
s 14 o A - ¢ ’6 Yoo p .3. 2M 1207 b
4 n LA 2% e Gt
¢ o0 o\ \ 1 ¢ » i
[ 0, B Dsg;;gmne GUPscb P \ 1
- 2149 HR 8799 bed —
16 \—»wcbouwaf ]
P ' \5 GJ758B
) JRoss 458 (AB)c VHS 1256 PSO J318
18 4 B
3 + 1
4 ’ 4
GJ504b
20+ , .. ]
¢ ot 1
L L L L
1 0 2 3

1
J-K



Astrophysical Noise
[e]e] lele}

More information always helps

Macintosh et al. (2015)
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The fact that spectrum of the point source looks like a cool T dwarf
enabled to calculate the contamination probability only using one epoch
and a non detection in 2003.
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Age of stars: an oral story

Carson et al. (2009)

The mass of Kappa Andromeda
Spiegel and Burrows (2010)

H-band Evolution

Age (Myr)

We need the age of the system to tie the
luminosity of the companion to its mass
using evolutionary tracks
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Age of stars: an oral story

Carson et al. (2009)

The mass of Kappa Andromeda

o Discovery paper, young (~ 50 Myrs)
moving group, mass ~ 12 M.
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Age of stars: an oral story

Hinkley et al. (2013)
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Age of stars: an oral story

Hinkley et al. (2013)

The mass of Kappa Andromeda

o Discovery paper, young (~ 50 Myrs)
moving group, mass ~ 12 M.

@ Second look: moving group
membership not so convincing, star too
bright to be young. Revised age ~ 200
Myrs, mass ~ 30 M.
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Age of stars: an oral st

Hinkley et al. (2013)

2.1 — T T T T
‘ The mass of Kappa Andromeda
o Discovery paper, young (~ 50 Myrs)
moving group, mass ~ 12 M.

@ Second look: moving group
membership not so convincing, star too
bright to be young. Revised age ~ 200
Myrs, mass ~ 30 M.
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Age of stars: an oral st

Jones et al. (2013)
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The mass of Kappa Andromeda

o Discovery paper, young (~ 50 Myrs)
moving group, mass ~ 12 M.

@ Second look: moving group
membership not so convincing, star too
bright to be young. Revised age ~ 200
Myrs, mass ~ 30 M.

@ Third look: it turns out that Kappa
And is a pole on fast rotator, which
explains why it is over luminous, back
to ~ 50 Myrs, ~ 12 M, after all!
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Age of stars with baysian inference

Baysian ages. Brandt (2015)
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Age of stars with baysian

Baysian ages. Brandt (2015)
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Age of stars with baysian i

Baysian moving group membership. Gagne

Baysian ages. Brandt (2015) et al. (2015)
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Age of stars with baysian

Baysian ages. Brandt (2015)
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Know your noise!

@ Methods to mitigate astrophysical noise are somewhat more “modern”
than for instrument noise.

@ This is because we know more about the universe than about speckles.

@ There is a lot of room for growth in the data analysis domain.

Key things to watch out for the future

o GPIl and SPHERE (as instruments) are just starting. They are beautiful
planet characterization machines.

@ Solve the million dollar problem: reconcile RV and direct imaging Jupiter
analog occurrence rates? Do we need deeper contrast? Do we need better
angular resolution (... and wait for ELTs)?

@ The possibility of obtaining short exposures times might completely
change this story.

o JWST data might completely challenge the way we thing about the
instrument noise.

@ Properly handling astrophysical noise will be critical for WFIRST.




Thank you
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