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but first, Sagan workshops, symposiums and fellowships are the bomb



lunch with Saganites

drink coffee with Saganites

do the Saganite hands-on thingies

POP the Saganites
listen to the Saganites

how to get the most out of a Sagan workshop, 2009-style

(perhaps bring more than one 
t-shirt for the whole week)



what i’ve learned about statistics

learning: textbooks/lectures are useful but personally i 
prefer to just play and do, if you’re similar then rest assured 

this is still a good way to learn! you are “smart” enough

community: astrostatistics is a small but rapidly growing 
field, many workshops now that I didn’t have access to! 

why?: i think of statistics as a means to an end, rather 
than the end itself, a way to answer astro questions

you: (i bet) you are all more knowledgeable about 
statistics than I was, i’ve just learned on the job and 
learned from many of the amazing lecturers here via 
papers and talks - so make sure you meet them all!

credibility: be warned that many respectable 
astronomers literally say Bayesian statistics is black magic
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BEST FIT

by-product of the MCMC is a 
reasonable estimate of the best fit, 
but that’s really not it’s raison d’être



What is the product of 
MCMC?

DATA POSTERIOR

MCMC

and really by this I mean a set of 
samples from the posterior

INPUT PROCESS OUTPUT



what is: joint a-posteriori probability distribution (“posterior”)

the (joint) probability distribution of some parameters of interest, θ, 
conditioned upon some data, 𝓓 and a model/hypothesis, 𝓜

basically what’s the credible range of your 
model parameters allowed by your data

(not strictly correct, but OK 
to think of this way)

you can also think of... 
posterior = what you think the parameters are post using data 

prior = what you think the parameter prior to using data

prior belief data posterior belief



example, θ contains 16 parameters

Kipping et al. (2016)

this way of visualizing the posteriors is 
called a triangle plot, check out 

github.com/dfm/corner.py

those dashed lines are the 
68.3% quantiles, which we often 

declare as θ1=2.0±0.1



P(𝒟|𝚯,𝓜)P(𝚯|𝓜)
P(𝒟|𝓜)P(𝚯|𝒟,𝓜) =

evidence, 𝙕, (marginal likelihood)

likelihood, 𝓛 prior, π

posterior, 𝓟

P(𝒟|𝓜) = ∫ P(𝒟|𝚯,𝓜)P(𝚯|𝓜) dN𝚯
normalization factor, doesn’t depend on 𝚯

prior belief data posterior belief

[if you want this for model selection, 
do nested sampling, not MCMC]



P(𝒟|𝚯,𝓜)P(𝚯|𝓜)P(𝚯|𝒟,𝓜) ∝

likelihood, 𝓛 prior, π
posterior, 𝓟

prior belief data posterior belief

in MCMC, we are just trying to get the posterior, the 
normalization factor makes no difference to that so ignore it



P(𝒟|𝚯,𝓜)P(𝚯|𝓜)P(

likelihood, prior, π
posterior, 

prior belief data posterior belief

in MCMC, we are just trying to get the posterior, the 
normalization factor makes no difference to that so ignore it

a common sin by MCMC’ers is to pay little attention 
to the prior... I’ll come back to this next lecture



DATA POSTERIOR

MCMC

INPUT PROCESS OUTPUT

let’s expand this out...



DATA model

sampler

θ ℒ

“POSTERIOR”

INPUT

PROCESS

OUTPUT

θ π

priors

data

𝒟

MCMC

the sampler “guesses” different θ 
vectors, calculates the posterior 

probability of that guess, and 
then makes small jumps

actually the point of the 
sampler is to make 

intelligent guesses with high 
posterior probabilities
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likelihood, 𝓛

we never really know the true noise, but often we can make a 
good approximation, e.g. normally distributed (“white”)

yobs = ytrue + 𝛆

observations are perturbed by stochastic noise

P(𝒟|𝚯,𝓜) =

likelihood, 𝓛

exp(-½ri2/σi2)
(2π)½σi

∏
i=1

N

just the pdf of a normal

log𝓛 = -log(2π) - log(σi2) - ri2/σi2Σ
i=1

N
½

it’s often more convenient to calculate log𝓛

=𝛘2 log𝓛 = c - ½𝛘2 
if σi=constant

residuals of 
data - model

measurement 
uncertainty



P(𝒟|𝚯,𝓜) =

you don’t have assume uncorrelated errors, for example 
could use a Gaussian process likelihood...

check out https://speakerdeck.com/dfm/an-
astronomers-introduction-to-gaussian-processes

https://speakerdeck.com/dfm/an-astronomers-introduction-to-gaussian-processes
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so we need...

some data 
a model 

a sampler 
an equation for the likelihood 

an equation for the prior next lecture

simple example: 
Metropolis (1953) 

algorithm



a

b

1. define a function for ℒ & π and thus 𝓟 

true answer 
is here

initial random 
guess

high 𝓟 
(➡ high ℒ)  

(➡ low 𝛘2)

low 𝓟 
(➡ low ℒ) 

(➡ high 𝛘2)

2. define an initial guess for θ from π  

θ0 = initial θ = (a0,b0)

 (not the highest posterior 
probability though)



1. define a function for ℒ & π and thus 𝓟 
2. define an initial guess for θ from π  

high 𝓟 region

θ0, 𝓟0

a

b



3. try a jump in θ

θtrial, 𝓟trial

METROPOLIS RULE

try a jump!
θ0, 𝓟0

a

b

if 𝓟trial > 𝓟i, 
accept the jump, so 
θi+1 = θtrial

high 𝓟 region



METROPOLIS RULE

3. try a jump in θ 

θ0, 𝓟0

θ1, 𝓟1

a

b

if 𝓟trial > 𝓟i, 
accept the jump, so 
θi+1 = θtrial

high 𝓟 region



METROPOLIS RULE

θtrial, 𝓟trial

if 𝓟trial < 𝓟i, 
accept the jump with 
probability 𝓟trial/𝓟i

3. try a jump in θ 

θ0, 𝓟0

θ1, 𝓟1

a

b

if 𝓟trial > 𝓟i, 
accept the jump, so 
θi+1 = θtrial

high 𝓟 region

this is why evidence 
doesn’t matter in MCMC!



METROPOLIS RULE

that’s it!

3. try a jump in θ 
4. accept/reject based on Metropolis Rule

if 𝓟trial < 𝓟i, 
accept the jump with 
probability 𝓟trial/𝓟i

θ0, 𝓟0

θ1, 𝓟1

a

b

if 𝓟trial > 𝓟i, 
accept the jump, so 
θi+1 = θtrial

high 𝓟 region



5. keep jumping!

METROPOLIS RULE

the successful jumps 
form a chain, called a  
Markov chain

the algorithm is endless, 
it will kind of orbit the 
true solution forever but  
never stop at it

θ0, 𝓟0

θ1, 𝓟1

if 𝓟trial < 𝓟i, 
accept the jump with 
probability 𝓟trial/𝓟i

a

b

if 𝓟trial > 𝓟i, 
accept the jump, so 
θi+1 = θtrial

high 𝓟 region



5. keep jumping!

METROPOLIS RULE

burn-in steps

post burn-in, fair 
draws/samples/realizations

6. after you’ve done many steps, remove burn-in steps

if 𝓟trial > 𝓟i, 
accept the jump, so 
θi+1 = θtrial

if 𝓟trial < 𝓟i, 
accept the jump with 
probability 𝓟trial/𝓟i

a

b



METROPOLIS RULE

if 𝓛trial > 𝓛i, 
accept the jump, so 
θi+1 = θtrial

if 𝓛trial < 𝓛i, 
accept the jump with 
probability 𝓛trial/𝓛i

METROPOLIS RULE

if 𝛘2trial < 𝛘2i, 
accept the jump, so 
θi+1 = θtrial

if 𝛘2trial > 𝛘2i, 
accept the jump with 
probability exp(-Δ𝛘2/2)

METROPOLIS RULE

if 𝓟trial > 𝓟i, 
accept the jump, so 
θi+1 = θtrial

if 𝓟trial < 𝓟i, 
accept the jump with 
probability 𝓟trial/𝓟i

general case someone ignoring priors someone ignoring priors 
and assuming normal errors



 𝛘2i

step number, i

burn-in steps

post burn-in i.e. posterior samples

you want a large number of these (104 - 105)

burn-in point can be spotted by eye...



1. define a function for ℒ & π and thus 𝓟 

2. define an initial guess for θ from π  
3. try a jump in θ 
4. accept/reject based on Metropolis Rule
5. keep jumping!
6. after you’ve done many steps, remove burn-in steps

MCMC algorithm



How to make jumps (proposals)?

simplest thing is to use a normal distribution

let θtrial = θi + 𝓝(0,Δθ)

so draw a random number from a normal 
distribution with stdev = “jump scale”

ok...so how do I choose jump scale, Δθ?!
That’s tricky, too small and it will take forever, too big 
and you will overshoot. Experiment, and ideally tune to 
a number which leads to a 10-70% acceptance rate

(you have to do this for each dimension!)



some checks to do...

Burn-in: when the chain’s likelihood exceeds the median likelihood of 
the entire chain, demarks burn-in point

Mixing: effective length of the chain should be at least a few 
hundred, ideally thousands (each eff length defines a part of the 
chain which is highly auto-correlated, common cutoff is 0.5)

Convergence: Run multiple chains independently and make sure they 
arrive at the same end point, Gelman-Rubins statistic is a useful check

caveat: for each of these, there are no single right answers that always 
work, always inspect your chains, but here are some useful tips...



even if you do all that...
...Metropolis can still be a real pain for certain problems

a

b
b m

in
b m

ax

amin amax

normal proposals 
work fine here



even if you do all that...
...Metropolis can still be a real pain for certain problems

a

b
b m

in
b m

ax

amin amax

normal proposals  
very inefficient here



even if you do all that...
...Metropolis can still be a real pain for certain problems

a

b
b m

in
b m

ax

amin amax

normal proposals 
get stuck (unless you 
run for v. v. long time)



my advise...
write your own Metropolis MCMC, it’s a great way to learn

but except for simple problems, it’s difficult to know 
what a good proposal function is, so you will probably 

want to use a smarter sampler than Metropolis

fortunately there are many more sophisticated 
techniques available to you...



some examples...
(non-exhaustive! there are hundreds of methods!)



metropolis-hastings
generalization of metropolis to asymmetric proposals

METROPOLIS RULE

accept the jump with 
probability min(a,1):

METROPOLIS 
HASTINGS RULE

𝓟(θi)
a = 𝓟(θtrial)

a = 𝓟(θtrial)/J(θtrial|θi)
𝓟(θi)/J(θi|θtrial)

accept the jump with 
probability min(a,1):

Hastings (1970)



simulated annealing
good for multi-modal problems

if 𝓟trial < 𝓟i, 
accept the jump with 
probability (𝓟trial/𝓟i)

if 𝓟trial < 𝓟i, 
accept the jump with 
probability (𝓟trial/𝓟i)1/T

𝓛

θ 

think of it as 
smoothing out the 
likelihood space at 
high temperatures

N likelihood maxima, 
but one global 

maximum

simple Metropolis 
gets stuck in local 

minima

usually the jump sizes 
are increased similarly

gradually turn the 
temperature down until you 
hit T=1, you can only use 
samples from that level 

(“cooling schedule”)



parallel tempering

similar to simulated annealing, 
except temperatures are not 
run in series but in parallel

good for multi-modal problems with parallel computing

at a pre-set step frequency, 
allow chains to swap 

T1

T2

T3

T4

T5

T6

T7

T8

te
m

pe
ra

tu
re

 le
ve

ls

MCMC chain update
i i+1

only the lowest chain is 
used for posterior samples



affine-invariant sampling
good for multi-modal & correlated problems with parallel computing

set of walkers

Goodman & Weare (2010)



affine-invariant sampling
good for multi-modal & correlated problems with parallel computing

starting 
point

set of walkers

Goodman & Weare (2010)



affine-invariant sampling
good for multi-modal & correlated problems with parallel computing

starting 
point

set of walkers

test 
point

proposed 
displacement 

direction

Goodman & Weare (2010)



affine-invariant sampling
good for multi-modal & correlated problems with parallel computing

an ensemble MCMC: no longer 
just updating one set of model 
parameters each time, but a 

generation/ensemble

starting 
point

test 
point

proposed 
displacement 

direction

proposal

emcee (python): Foreman-Mackey et al. (2013)

Goodman & Weare (2010)



differential evolution
good for multi-modal & correlated problems with parallel computing

test 
point

test 
point

proposed 
displacement 

direction

ter Braak (2006)

starting 
point



differential evolution
good for multi-modal & correlated problems with parallel computing

test 
point

test 
point

proposed 
displacement 

direction

exofast (idl): Eastman et al. (2012)

ter Braak (2006)

starting 
point

proposal

both affine invariant and 
differential evolution have 
fewer tuning parameters 
than Metropolis, primarily 
need to just set the scale

emcee (python): Foreman-Mackey et al. (2013)



getting started
‣ first make sure you are comfortable with the concepts of 
priors, likelihood and posteriors

‣ then try coding up your own MCMC with Metropolis sampling 
in your favourite language, run on some toy problems

‣ before choosing a prepackaged MCMC, think about your problem 
e.g. dimensionality, correlations, likelihood cost, multimodality

‣ then do some research about “good” algorithms for your problem: 
literature search, google, Astrostatistics FB group, ask colleagues!

‣ (if a few options, choose the one you feel like you best understand!)


