
Sagan Summer Workshop 2016
Is There a Planet in My Data?

Detection and Spectroscopic Characterization of
Transiting Exoplanet Observations with the James
Webb Space Telescope (JWST) Hands-on Session

Facilitator: Nikole Lewis
Contributors: Michael Line, Jason Rowe, Jeff Valenti, Laura Kreidberg

1 Introduction

The James Webb Space Telescope (JWST) will be host to an array of instruments and modes
that are suited to the study of transiting exoplanets in wavelength range from 0.6 to 28 µm
(see excellent review in Beichman et al. (2014)) The Single-Object Slitless Spectroscopy
(SOSS) mode of the Near-InfraRed Image and Slitless Spectrograph (NIRISS) instrument on
the James Webb Space Telescope (JWST) was specifically designed to enable high-precision
observations of transiting exoplanets. SOSS was specifically designed to have a very wide
(∼25 pix) cross-dispersion point-spread function (PSF) that should limit its susceptibility
to jitter induced sources of noise and allow for the observation of bright exoplanet host stars
(J>6). The SOSS mode operates in the wavelength range between 0.6 and 2.8 µm, which
encompasses spectral features of key atmospheric species such as water, carbon dioxide, and
methane. The R∼700 spectra from SOSS will be critical in the characteriation of exoplanet
atmospheres with JWST.

2 Objectives
The objective of this session is to give you hands-on experience with processing and analyz-
ing synthetic JWST transiting exoplanet datasets. It is expected that the JWST pipeline
will produce a range of data products that will allow both novice and expert users to rapidly
extract ‘science’ from their transiting exoplanet observations. Here we will start with data
products that are expected to enter the brach of the JWST pipeline specific to time-series
observations like those of transiting exoplanets. We will then step you through the spectral
extraction, transit fitting, and atmospheric retrieval processes required to extract meaning-
ful contraints on the composition (and complexities) of exoplanet atmospheres from transit
observations with JWST. A full analysis typically takes many days, so here we will provide
precomputed shortcuts between many steps. However, many of the tools and lessons pre-
sented here can be adapted to serve as robust analysis pipelines for future JWST data. All of
the code and tools presented here are Python based, which will serve as ‘common language’
for JWST.

3 Background
Exoplanets that transit their host star as viewed from earth represent our best opportu-
nity for atmospheric characterization studies given observational facilities like JWST. These
transiting exoplanets allow their atmospheres and/or surfaces to be probed through high-
precision (<1%) relative spectrophotometric observation obtained throughout the planet’s

1

orbit Figure 1. Atmospheric transmission spectra obtained as the planet passes in front of
the host star probe the chemical composition of the planet?s atmosphere. The shape of the
planetary transit can be used to constrain some of the orbital properties of the planet such
semi-major axis (in stellar units, a/R?) and orbital inclination (i). The orbital period of
the planet (P) can be estimated if multiple transit events are measured for the same target.
Critically, transits provide constraints on the radius of the planet (in stellar units, Rp/R?)
through the depth of the transit (R2

p/R
2
?). Further discussion of transit geometry is provided

by Winn (2010) and many other references.

!"#$

%&'(

!"#$%&!

'(()*!#!&'$

!"#$%#&'()

!"#$%*%+&#()"%,#-!.,)

!"#$%*%+&#()"%(./0"!.,)

!"#$%1%+&#()"%!0#,'2

Fig. 1.— Illustration of transits and occultations. Only the combined flux of the star and planet is observed. During a transit, the flux
drops because the planet blocks a fraction of the starlight. Then the flux rises as the planet’s dayside comes into view. The flux drops
again when the planet is occulted by the star.

as well align theX axis with the line of nodes; we place the
descending node of the planet’s orbit along the +X axis,
giving Ω = 180◦.
The distance between the star and planet is given by

equation (20) of the chapter by Murray and Correia:

r =
a(1 − e2)

1 + e cos f
, (1)

where a is the semimajor axis of the relative orbit and f
is the true anomaly, an implicit function of time depending
on the orbital eccentricity e and period P (see Section 3 of
the chapter by Murray and Correia). This can be resolved
into Cartesian coordinates using equations (53-55) of the
chapter by Murray and Correia, with Ω = 180◦:

X = −r cos(ω + f), (2)
Y = −r sin(ω + f) cos i, (3)
Z = r sin(ω + f) sin i. (4)

If eclipses occur, they do so when rsky ≡
√

X2 + Y 2 is
a local minimum. Using equations (2-3),

rsky =
a(1 − e2)

1 + e cos f

√
1 − sin2(ω + f) sin2 i. (5)

Minimizing this expression leads to lengthy algebra (Kip-
ping 2008). However, an excellent approximation that we
will use throughout this chapter is that eclipses are centered

around conjunctions, which are defined by the condition
X = 0 and may be inferior (planet in front) or superior
(star in front). This gives

ftra = +
π

2
− ω, focc = −π

2
− ω, (6)

where here and elsewhere in this chapter, “tra” refers to
transits and “occ” to occultations. This approximation is
valid for all cases except extremely eccentric and close-in
orbits with grazing eclipses.
The impact parameter b is the sky-projected distance at

conjunction, in units of the stellar radius:

btra =
a cos i

R⋆

(
1 − e2

1 + e sinω

)
, (7)

bocc =
a cos i

R⋆

(
1 − e2

1 − e sinω

)
. (8)

For the common case R⋆ ≪ a, the planet’s path across
(or behind) the stellar disk is approximately a straight line
between the pointsX = ±R⋆

√
1 − b2 at Y = bR⋆.

2.2 Probability of eclipses

Eclipses are seen only by privileged observers who view
a planet’s orbit nearly edge-on. As the planet orbits its star,
its shadow describes a cone that sweeps out a band on the
celestial sphere, as illustrated in Figure 3. A distant ob-
server within the shadow band will see transits. The open-
ing angle of the cone, Θ, satisfies the condition sinΘ =

2

Figure 1: Schematic of transits and occultations from Winn (2010). During transit the
planet blocks a portion of the stellar disk creating a drop in the flux from the system. The
transit can be used to constrain some of the orbital properties of the planet, but critically
the transit yields an estimate of the radius of the planet.

Limb darkening is the term used to describe the ratio of stellar intensity to central
intensity from disk center to the limb. At disk center this ratio is unity by definition. For
simple geometric reasons, as one views progressively closer to the limb, the spectrum forms
progressively higher in the stellar atmosphere. Temperature decreases with height in the
photosphere, so forming higher in the atmosphere means forming in cooler layers. Cooler
layers are fainter. Thus, stellar intensity decreases (get ”darker”) towards the limb. The
effects of limb darkening on the shape of transits can be seen in the left panel of Figure 2.
Further discussion of limb darkening in the context of planetary transits can be found in
Mandel and Agol (2002); Knutson et al. (2007); Espinoza and Jordán (2015, 2016) (not an
exhaustive list).

2

Measuring planetary transits at multiple wavelengths produces a planetary spectrum (see
right panel of Figure 2). The planet will appear larger or smaller depending on the opacity
of the atmosphere at a given wavelength. The amplitude of these spectral features will
depend on planet size, temperature, and atmospheric composition. Roughly speaking the
level of absorption will scale as the transit depth (R2

p/R
2
?) times the ratio of the planetary

scale height (H) to the planetary bulk radius (Rp). The planetary scale height is determined
by both the planetary temperature and atmospheric composition, H = kTp/µg, where k
is Boltzmann’s constant, Tp is the temperature of the planet, µ is the mean molecular
weight of the atmosphere, and g is the average planetary gravitational acceleration. An
excellent reference for the topic of exoplanet atmospheres is the book entitled “Exoplanet
Atmospheres: Physical Processes” by Sara Seager (Seager, 2010)

collaborators (and their Pythonbased code) to develop a flexible, opensource,
stateoftheart module that performs Bayesian atmospheric retrievals.

● Planetary atmospheres libraries and tools (Leads: Lewis & Valenti)
Both the atmospheric forward modeling and retrieval efforts rely on access to
robust atomic, molecular, and cloud/haze optical property libraries and basic
radiative transfer models/tools. We will build our own spectroscopic libraries
from publically available databases and integrate them with results from ongoing
work currently being performed by our team (haze study with collaborators at
JHU). We will also build basic radiative transfer models/tools relevant to a range
of exoplanet observations based on opensource tools in the exoplanet
community as well as the “Spectroscopy Made Easy” tool developed by coI
Valenti.

References
To access each reference directly click on the hyperlink associated with that citation.

Figure 1. Left panel: Normalized light curves of the transiting exoplanet HD 209458b in
ten spectroscopic channels (Knutson et al, 2007). The change in limb darkening from
300 nm (purple) to 1000 nm (red) is readily noticeable. Right panel: Transmission spectra
of ten exoplanets (Sing et al, 2015). These example spectra illustrate the current state of
the field. JWST will provide more precise, higherresolution transmission spectra over a
broader wavelength range (0.6 12 m).μ

5

Figure 2: Left panel: Normalized light curves of the transiting exoplanet HD 209458b in
ten spectroscopic channels Knutson et al. (2007). The change in limb darkening from 300
nm (purple) to 1000 nm (red) is readily noticeable. Right panel: Transmission spectra of
ten exoplanets Sing et al. (2016). These example spectra illustrate the current state of the
field. JWST will provide more precise, higher-resolution transmission spectra over a broader
wavelength range (0.6 - 28 µm).

Atmospheric retrieval refers to the coupling between Bayesian parameter estimation and
radiative transfer. In general, the purpose of an atmospheric retrieval is to extract the ab-
sorber abundances and thermal structures from a spectrum with the ultimate goal of better
understanding the physical and chemical processes occurring in planetary atmospheres. The
concept of atmospheric retrieval is by no means new, with its origin in the Earth remote
sensing community (Rodgers, 1976; Twomey et al., 1977; Rodgers, 2000; Crisp et al., 2004)

3

developed to interpret satellite based sounding data to improve weather forecasting. Re-
trieval is often seen as a mysterious “dark art” but is little more than a simple parameter
estimation problem. Most of the challenges in atmospheric retrieval involve the complex na-
ture of planetary atmospheres and how to parameterize them in a computationally feasible
manner.

Figure 3: Schematic of retrieval process.

As remote sensing data of the solar system planets improved via orbiters and probes,
atmospheric retrieval techniques were necessarily required. The techniques usually included
a radiative transfer model (also refereed to as the forward model) that would determine the
top-of-atmosphere fluxes as a function of wavelength given the vertical thermal profile, cloud
properties, and molecular abundances coupled with a Levenberg-Marquardt solver (Conrath
et al., 1998; Irwin et al., 2008; Fletcher et al., 2007; Greathouse et al., 2011). This classic
inversion approach, Optimal Estimation, makes use of local gradient information, or how
the flux at each wavelength varies with a perturbation on each parameter (the Jacobian) to
minimize a cost function that is some combination of the data-model fit and deviation from
the prior (if incorporated). This is a fast, iterative approach and is generally applicable when
the signal-to-noise and spectral resolutions are sufficiently high and systematic uncertainties
are negligible such that the parameter space is well approximated by a multi-dimensional
Gaussian, typical of earth and solar system data. Gaussian parameter uncertainties are
estimated via a covariance matrix about the best fit. The additional complexity of retrieval
over a simple “linear-regression” is the inclusion of prior information. For well observed
objects strong priors on the thermal structure and abundances could be used.

The above approaches work well for solar system and Earth data where data quality is
high, e.g., the signal-to-noise, spectral resolution, and spectral coverage are all very high. In
this regime parameter uncertainties are well approximated by Gaussian statistics, and strong
priors exist. In the realm of exoplanet atmosphere retrievals, neither of these exist. In this
case, classic retrieval approaches can break down. In this case, more sophisticated Bayesian

4

methods must be employed. The most common are grid search methods (e.g. Madhusudhan
and Seager, 2009) or Markov Chain Monte Carlo (Madhusudhan et al., 2011; Benneke and
Seager, 2012; Line et al., 2013; Waldmann et al., 2015). Furthemore, atmospheric model
parameterizations are ill defined and the answers can depend strongly upon model assump-
tions. Model selection approaches become increasingly more important to justify the use of
one set of model assumptions over the other.

Figure 3 illustrates the basic components of a retrieval algorithm. The forward model,
F(x), is usually some type of radiative transfer model that maps the atmospheric state (e.g.,
temperatures, abundances, cloud properties) onto the data, e.g., transmission, emission, or
reflection spectra. The forward model parameters can then be adjusted with various Bayesian
methods.

4 Outline
This exercise will consist of three main modules:

1. First we will work with the three-dimensional synthetic NIRISS SOSS spectral data
cubes to extract a time-series of the stellar spectrum and produce a light curve(s).

2. Next we will fit planetary transit(s) to the light curve(s) to derive a planetary spectrum.

3. Finally we will perform an atmospheric retrieval exercise to place constraints on the
composition of the planetary atmosphere.

Fully executed python notebooks are located in appendix of this document.

5 Exercises

5.1 Spectral Extraction

Here we will take a look at synthetic set of NIRISS SOSS 2D and 1D spectra timeseries.
These data are similar to what will be produced by level 2 and 3 of the TSO branch of
the JWST pipeline. It is important to note that the JWST pipeline will deliver high-
quality science ready products, such as extracted spectra and white-light curves. However,
understanding how those spectra are produced is essential for furthering the science yield of
JWST. High-level questions for this exercise are:

1. What are the potential complications with extracting JWST time-series spectra?

2. With the time-series spectra in hand, how do you find your planetary transit?

3. What is the potential utility of the white-light curve data JWST pipeline data product?

The python notebook and supporting codes/files are contained in the spec extract/ folder.
To begin the exercise, ensure that you are in the correct folder and type:
jupyter notebook Spectral Extraction Exercise.ipynb

5

5.2 Light-curve Fitting

Here we will step through the process of fitting theoretical planetary light-curves as a function
of wavelength to produce a planetary spectrum (Rp(?)/R?). High-level questions for this
exercise are:

1. How do each of the key planetary parameters (a/R?, inclination, and Rp/Rstar) affect
the shape of the transit?

2. How does your choice of limb-darkening functional form affect the shape of your light
curve? What potential errors could be introduced into your planetary spectrum from
poor limb-darkening choices (functional form, wavelength dependence, and fixed vs.
fitted)?

3. How do you extract your planetary spectrum from the wavelength dependent transit
data?

The python notebook and supporting code are contained in the transit/ folder. To begin
this exercise, ensure that you are in the correct folder and type:
jupyter notebook Transit Fitting with BATMAN.ipynb

5.3 Spectral Retrieval

In the retrieval component of this workshop we will play with a simple transit transmission
spectrum forward model. We will first explore the important physical parameters that govern
the shape of a transmission spectrum. We will then analyze the results of a pre-computed
atmospheric retrieval (due to time constraints) to determine the degree to which we can
constrain various atmospheric properties from a representative JWST spectra. High-level
questions for this exercise are:

1. What are the primary constituents in your exoplanet atmosphere based on the derived
spectrum?

2. What compositional information can be robustly determined from the NIRISS SOSS
data alone?

3. How does the possible presence of clouds affect your compositional solution?

The python notebook and supporting codes and opacity tables are contained in the re-
trievals/ folder. To begin this exercise, ensure that you are in the correct folder and type:
jupyter notebook Spectral Retrieval Exercise.ipynb

References
Benneke, B., and S. Seager 2012. Atmospheric Retrieval for Super-Earths: Uniquely Con-

straining the Atmospheric Composition with Transmission Spectroscopy. ApJ 753, 100.

6

Conrath, B. J., P. J. Gierasch, and E. A. Ustinov 1998. Thermal Structure and Para Hy-
drogen Fraction on the Outer Planets from Voyager IRIS Measurements. Icarus 135,
501–517.

Crisp, D., R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor,
S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O’Brien, S. Pawson, J. T. Randerson,
P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon,
P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss,
R. Pollock, D. Kenyon, and S. Schroll 2004. The Orbiting Carbon Observatory (OCO)
mission. Advances in Space Research 34, 700–709.

Espinoza, N., and A. Jordán 2015. Limb darkening and exoplanets: testing stellar model
atmospheres and identifying biases in transit parameters. MNRAS 450, 1879–1899.

Espinoza, N., and A. Jordán 2016. Limb darkening and exoplanets - II. Choosing the best
law for optimal retrieval of transit parameters. MNRAS 457, 3573–3581.

Fletcher, L. N., P. G. J. Irwin, N. A. Teanby, G. S. Orton, P. D. Parrish, R. de Kok,
C. Howett, S. B. Calcutt, N. Bowles, and F. W. Taylor 2007. Characterising Saturn’s
vertical temperature structure from Cassini/CIRS. Icarus 189, 457–478.

Greathouse, T. K., M. Richter, J. Lacy, J. Moses, G. Orton, T. Encrenaz, H. B. Hammel, and
D. Jaffe 2011. A spatially resolved high spectral resolution study of Neptune’s stratosphere.
Icarus 214, 606–621.

Irwin, P. G. J., N. A. Teanby, R. de Kok, L. N. Fletcher, C. J. A. Howett, C. C. C. Tsang,
C. F. Wilson, S. B. Calcutt, C. A. Nixon, and P. D. Parrish 2008. The NEMESIS planetary
atmosphere radiative transfer and retrieval tool. J. Quant. Spec. Radiat. Transf. 109,
1136–1150.

Knutson, H. A., D. Charbonneau, R. W. Noyes, T. M. Brown, and R. L. Gilliland 2007. Using
Stellar Limb-Darkening to Refine the Properties of HD 209458b. ApJ 655, 564–575.

Line, M. R., A. S. Wolf, X. Zhang, H. Knutson, J. A. Kammer, E. Ellison, P. Deroo, D. Crisp,
and Y. L. Yung 2013. A Systematic Retrieval Analysis of Secondary Eclipse Spectra. I. A
Comparison of Atmospheric Retrieval Techniques. ApJ 775, 137.

Madhusudhan, N., J. Harrington, K. B. Stevenson, S. Nymeyer, C. J. Campo, P. J. Wheatley,
D. Deming, J. Blecic, R. A. Hardy, N. B. Lust, D. R. Anderson, A. Collier-Cameron,
C. B. T. Britt, W. C. Bowman, L. Hebb, C. Hellier, P. F. L. Maxted, D. Pollacco, and
R. G. West 2011. A high C/O ratio and weak thermal inversion in the atmosphere of
exoplanet WASP-12b. Nature 469, 64–67.

Madhusudhan, N., and S. Seager 2009. A Temperature and Abundance Retrieval Method
for Exoplanet Atmospheres. ApJ 707, 24–39.

Mandel, K., and E. Agol 2002. Analytic Light Curves for Planetary Transit Searches.
ApJL 580, L171–L175.

7

Rodgers, C. D. 1976. Retrieval of Atmospheric Temperature and Composition From Remote
Measurements of Thermal Radiation. Reviews of Geophysics and Space Physics 14, 609.

Rodgers, C. D. 2000. Inverse Methods for Atmospheric Sounding - Theory and Practice.
Inverse Methods for Atmospheric Sounding - Theory and Practice. Series: Series on At-
mospheric Oceanic and Planetary Physics, ISBN: ¡ISBN¿9789812813718¡/ISBN¿. World
Scientific Publishing Co. Pte. Ltd., Edited by Clive D. Rodgers, vol. 2 2.

Seager, S. 2010. Exoplanet Atmospheres: Physical Processes.

Sing, D. K., J. J. Fortney, N. Nikolov, H. R. Wakeford, T. Kataria, T. M. Evans, S. Aigrain,
G. E. Ballester, A. S. Burrows, D. Deming, J.-M. Désert, N. P. Gibson, G. W. Henry,
C. M. Huitson, H. A. Knutson, A. L. D. Etangs, F. Pont, A. P. Showman, A. Vidal-
Madjar, M. H. Williamson, and P. A. Wilson 2016. A continuum from clear to cloudy
hot-Jupiter exoplanets without primordial water depletion. Nature 529, 59–62.

Twomey, S., B. Herman, and R. Rabinoff 1977. An Extension to the Chahine Method of
Inverting the Radiative Transfer Equation. Journal of Atmospheric Sciences 34, 1085–
1090.

Waldmann, I. P., M. Rocchetto, G. Tinetti, E. J. Barton, S. N. Yurchenko, and J. Tennyson
2015. Tau-REx II: Retrieval of Emission Spectra. ApJ 813, 13.

Winn, J. N. 2010. Exoplanet Transits and Occultations, pp. 55–77.

A Appendix

8

Welcome! In this notebook we will step you through how to work with high-level data products that will be
produced by the time-series branch of the JWST pipeline. This exercise was compiled by Nikole Lewis
(STScI) with significant inputs from Jason Rowe (UdeM) and Jeff Valenti (STScI).

In [1]: #First let's load some useful modules
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from astropy.io import fits
%matplotlib inline

In [2]: #Let's first investigate the 2D SOSS trace images as a function of tim
e and get some info about what's in the fits file
hdulist2D= fits.open('planet1_2Dim.fits')
hdulist2D.info()

Filename: planet1_2Dim.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 44 ()
1 SCI ImageHDU 10 (2048, 256, 144) float32
2 JDMID ImageHDU 8 (144,) float64

The primary starting point for all "Level 3" processing of time-series data (spectra and photometry) are
datacubes that contain the 2D "slope" images, which have had basic corrections/calibrations applied (bias,
dark, flat, etc.). The fits file here contains primary header information, the 2D images, and a table of julien
dates (JD) that correspond to the center of each integration (time standards beyond JD such as BJD_UTC,
BJD_TT, and HJD will be provided).

In [3]: #First we'll check on the information in the primary header
primary = hdulist2D[0]
primary.header

9

Out[3]: SIMPLE = T / Fits standard
BITPIX = 16 / Bits per pixel
NAXIS = 0 / Number of axes
EXTEND = T / FITS dataset may contain extensions
IRAF-TLM= '2016-05-29T04:16:56' / Time of last modification
DATE = '2016-05-29T04:16:56.00' / Date this file was created (UTC
)
FILETYPE= 'UNCALIBRATED' / Type of data in the file
TELESCOP= 'JWST ' / Telescope used to acquire the data

 Programmatic information

TITLE = 'Exoplanet characterization in the JWST era' / Proposal ti
tle
PI_NAME = 'John Mather' / Principal investigator name

 Instrument configuration information

INSTRUME= 'NIRISS ' / Instrument used to acquire the data

 Exposure parameters

NINTS = 144 / Number of integrations in exposure
NGROUPS = 7 / Number of groups in integration
NFRAMES = 1 / Number of frames per group
GROUPGAP= 0 / Number of frames dropped between gr
oups
NSAMPLES= 1 / Number of A/D samples per pixel
TSAMPLE = 10 / Time between samples (microsec)
TFRAME = 5.49130 / Time between frames (sec)
TGROUP = 5.49130 / Time between groups (sec)
EFFINTTM= 32.9478 / Effective integration time (sec)
EFFEXPTM= 4744.48 / Effective exposure time (sec)
NRSTSTRT= 1 / Number of resets at start of exposu
re

 Subarray parameters

SUBARRAY= 'SUBSTRIP256' / Subarray used
SUBSTRT1= 1 / Number of pixels in axis 1 directio
n
SUBSIZE1= 2048 / Number of pixels in axis 1 directio
n
SUBSIZE2= 256 / Number of pixels in axis 2 directio
n
FASTAXIS= 2 / Fast readout axis direction
SLOWAXIS= 1 / Slow readout axis direction

 Aperture information

APERNAME= 'NIS-SOSSTA' / science aperture used

10

In [4]: #Now let's look at the science images and header information
sci = hdulist2D[1]
sci.data.shape

Out[4]: (144, 256, 2048)

In [5]: sci.header

Out[5]: XTENSION= 'IMAGE ' / Image extension
BITPIX = -32 / array data type
NAXIS = 3 /
NAXIS1 = 2048 /
NAXIS2 = 256 /
NAXIS3 = 144 /
PCOUNT = 0 / number of random group parameters
GCOUNT = 1 / number of random groups
EXTNAME = 'SCI ' / extension name
BUNIT = 'DN/s ' / physical units of the data array va
lues

In [6]: fig, ax = plt.subplots(figsize=(18, 2))
ax.imshow(sci.data[0,:,:], origin='lower')

Out[6]: <matplotlib.image.AxesImage at 0x1100ef590>

Above should be an image of the SOSS spectral traces in the 256x2048 subarray. What do you notice about
these spectral traces?

In [7]: #Let's use a log scale to get another view of this 2D SOSS image
from matplotlib.colors import LogNorm
fig, ax = plt.subplots(figsize=(18, 2))
ax.imshow(sci.data[0,:,:], origin='lower', norm=LogNorm())

Out[7]: <matplotlib.image.AxesImage at 0x1290db590>

11

The image above should clearly show the three-orders of the NIRISS SOSS spectra (1st, 2nd, and 3rd from
top to bottom). The 1st order covers roughly 0.7-2.8 microns, the 2nd order covers roughly 0.6-1.3 microns,
and the 3rd order covers roughly 0.6-0.85 microns. Wavelength increases to the right in the image above,
with the 1st and 2nd order overlapping at long wavelength end. What benefits and challenges do you see
with having multiple orders available for NIRISS SOSS spectra?

We will not work with extracting spectra from these 2D images in this hands-on session, but encourage you
to think about/develop spectral extraction techniques given this synthetic data. The level 3 of the time-series
branch of the JWST pipeline will perform spectral extraction and deliver spectra as function of time. The
fidelity of the extract spectra will likely evolve over time as techniques are developed/improved and
integrated into the pipeline. Keep in mind that the entire python-based JWST pipeline will be available to all
users and modules like the time-series spectral extraction can be swapped for user-defined versions.

In [8]: #Before we leave the 2D image data, let's get our JD values
jdmid = hdulist2D[2]
jdmid.data.shape

Out[8]: (144,)

In [9]: #Now let's move to the extracted spectra as a function of time
hdulist1D= fits.open('planet1_1Dspec.fits')
hdulist1D.info()

Filename: planet1_1Dspec.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 44 ()
1 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
2 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
3 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
4 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
5 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
6 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
7 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
8 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
9 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
10 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
11 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
12 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
13 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
14 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
15 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
16 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
17 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
18 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
19 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
20 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
21 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
22 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]

12

129 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
130 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
131 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
132 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
133 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
134 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
135 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
136 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
137 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
138 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
139 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
140 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
141 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
142 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
143 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
144 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]

What do you notice about the way that this data is stored compared to the 2D images?

In [10]: #Let's take a look at the primary header information
hdulist1D[0].header

13

Out[10]: SIMPLE = T / Fits standard
BITPIX = 16 / Bits per pixel
NAXIS = 0 / Number of axes
EXTEND = T / File may contain extensions
IRAF-TLM= '2016-05-29T04:16:56' / Time of last modification
DATE = '2016-05-29T04:16:56.00' / Date this file was created (UTC
)
FILETYPE= 'UNCALIBRATED' / Type of data in the file
TELESCOP= 'JWST ' / Telescope used to acquire the data

 Programmatic information

TITLE = 'Exoplanet characterization in the JWST era' / Proposal ti
tle
PI_NAME = 'John Mather' / Principal investigator name

 Instrument configuration information

INSTRUME= 'NIRISS ' / Instrument used to acquire the data

 Exposure parameters

NINTS = 144 / Number of integrations in exposure
NGROUPS = 7 / Number of groups in integration
NFRAMES = 1 / Number of frames per group
GROUPGAP= 0 / Number of frames dropped between gr
oups
NSAMPLES= 1 / Number of A/D samples per pixel
TSAMPLE = 10 / Time between samples (microsec)
TFRAME = 5.49130 / Time between frames (sec)
TGROUP = 5.49130 / Time between groups (sec)
EFFINTTM= 32.9478 / Effective integration time (sec)
EFFEXPTM= 4744.48 / Effective exposure time (sec)
NRSTSTRT= 1 / Number of resets at start of exposu
re

 Subarray parameters

SUBARRAY= 'SUBSTRIP256' / Subarray used
SUBSTRT1= 1 / Number of pixels in axis 1 directio
n
SUBSIZE1= 2048 / Number of pixels in axis 1 directio
n
SUBSIZE2= 256 / Number of pixels in axis 2 directio
n
FASTAXIS= 2 / Fast readout axis direction
SLOWAXIS= 1 / Slow readout axis direction

 Aperture information

APERNAME= 'NIS-SOSSTA' / science aperture used

14

In [11]: #Let's look at the first spectrum
spec1 = hdulist1D[1]
spec1.header

Out[11]: XTENSION= 'BINTABLE' / binary table extension
BITPIX = 8 / array data type
NAXIS = 2 / number of array dimensions
NAXIS1 = 8 / length of dimension 1
NAXIS2 = 2048 / length of dimension 2
PCOUNT = 0 / number of group parameters
GCOUNT = 1 / number of group
TFIELDS = 2 / number of table fields
EXTNAME = 'EXTRACT1D' / extension name
EXTVER = 1 / extension value
JDMID = 2458710.46502 / Julian date at integration midpoint
TFORM1 = '1E ' /Real*4 (floating point)
TTYPE1 = 'wavelength' /Label for column 1
TUNIT1 = 'micron ' /Units of column 1
TFORM2 = '1E ' /Real*4 (floating point)
TTYPE2 = 'countrate' /Label for column 2
TUNIT2 = 'DN/s ' /Units of column 2

In [12]: #Let's extract the JD from the header and read in the wavelength and c
ount rate
jd = spec1.header['JDMID']
wavelength = spec1.data.field(0)
countrate = spec1.data.field(1)

In [13]: #Let's plot the first (in time) spectrum
plt.plot(wavelength, countrate)

Out[13]: [<matplotlib.lines.Line2D at 0x12d016e50>]

15

Now that you see how to read-in/extract the first spectrum you are ready to FIND THE PLANET IN YOUR
DATA! Your first goal is to first produce a 'white-light' light curve (relative flux as a function of time). The
white-light light curve will be a quick look product for the time-series branch of the JWST pipeline. Then you
should try to produce light curves for various wavelengths (unbinned and binned).

16

TRANSIT FITTING with BATMAN!!!!
All credit goes to Laura Kreidberg for the development of BATMAN (cite: Kriedberg (2015), PASP) and the
excellent documentation maintained here: http://astro.uchicago.edu/~kreidberg/batman/index.html
(http://astro.uchicago.edu/~kreidberg/batman/index.html) All credit goes to Dan Foreman-Mackey and
Contributors for the development of EMCEE (cite: Foreman-Mackey et al (2013), PASP) with documenation
maintained here: http://dan.iel.fm/emcee/current/ (http://dan.iel.fm/emcee/current/)

This notebook will walk you through the process of fitting wavelength dependent transits to produce a
planetary atmospheric spectrum. This exercise was compiled by Nikole Lewis (STScI) with substantial inputs
from Laura Kreidberg (Harvard). First, let's initialize the BATMAN model.

In [1]: #Import required libraries
import numpy as np
import batman #package by Laura Kreidberg: http://astro.uchicago.edu/
~kreidberg/batman/
import emcee #package by Dan Foreman-Mackey: http://dan.iel.fm/emcee
/current/
import corner #package by Dan Foreman-Mackey: http://corner.readthedo
cs.io/en/latest/
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline

In [2]: #Initialize Parameters
params = batman.TransitParams() #object to store transit paramet
ers
params.t0 = 0. #time of inferior conjunction
params.per = 1. #orbital period
params.rp = 0.1 #planet radius (in units of stel
lar radii)
params.a = 15. #semi-major axis (in units of st
ellar radii)
params.inc = 87. #orbital inclination (in degrees
)
params.ecc = 0. #eccentricity
params.w = 90. #longitude of periastron (in deg
rees)
params.limb_dark = "nonlinear" #limb darkening model ->"uniform
", "linear", "quadratic", "nonlinear", etc.
params.u = [0.5, 0.1, 0.1, -0.1] #limb darkening coefficients

t = np.linspace(-0.025, 0.025, 1000) #times at which to calculate lig
ht curve
m = batman.TransitModel(params, t) #initializes model

17

In [3]: #Now let's make a light curve
flux = m.light_curve(params) #calculates light curv
e

In [4]: #Let's plot the light curve
plt.plot(t, flux)
plt.axis([t.min(), t.max(), flux.min(), 1.001])

Out[4]: [-0.025000000000000001, 0.025000000000000001, 0.99013517123557859, 1
.001]

Now take some time to adjust various parameters and see they affect the shape of the tranist light curve.
Pay particular attention to how your choices for limb darkening parameters and model affect the transit
shape.

In [5]: #We have saved light curves generated from the spectral extraction exe
rcise. Let's load that data.
import pickle
jdtot, white_lc, bin16_lcs, w16 = pickle.load(open("planet1_lcs.pic","
r"))

18

In [6]: #Let's plot the 'white-light' light curve
plt.plot(jdtot-np.median(jdtot), white_lc)
plt.axis([-0.04, 0.04, 0.984, 1.001])

Out[6]: [-0.04, 0.04, 0.984, 1.001]

In [76]: #Above should be a nice clean noise-free light curve. This is not rea
lstic.
#Let's create some noised up more realistic data and do some MCMC fitt
ing
n = jdtot.size
t = jdtot-np.median(jdtot)
flux=white_lc
err = 100.e-6 #100 ppm noise
flux = flux + np.random.normal(0, err, n)

In [77]: #Let's take a look at our noisy creation
plt.plot(t, flux)

Out[77]: [<matplotlib.lines.Line2D at 0x1155f1090>]

19

In the next few cells we're going to define some functions to assist with our fitting and allow us to interface
the EMCEE and BATMAN.

In [78]: #intialize a transit model
def initialize_model(t, t0, per, rp, a, inc, ecc, w, u, limb_dark):
 params = batman.TransitParams()
 params.t0 = t0
 params.per = per
 params.rp = rp
 params.a = a
 params.inc = inc
 params.ecc = ecc
 params.w = w
 params.u = u
 params.limb_dark = limb_dark

 model = batman.TransitModel(params, t)

 return params, batman.TransitModel(params, t) #return param
eters and model objects

In [79]: #prior
def lnprior(theta):
 return 0. #assumes all priors have uniform probability

In [162]: #likelihood function
def lnlike(theta, params, model, t, flux, err):
 params.rp, params.u = theta[0], [theta[1]] #update parameters
 params.t0 = theta[2]
params.a, params.inc = theta[3], theta[4]
 lc = model.light_curve(params)
 residuals = flux - lc
 ln_likelihood = -0.5*(np.sum((residuals/err)**2 + np.log(2.0*np.pi
*(err)**2)))

 return ln_likelihood

In [142]: #posterior probability
def lnprob(theta, params, model, t, flux, err):
 lp = lnprior(theta)
 if not np.isfinite(lp):
 return -np.inf
 return lp + lnlike(theta, params, model, t, flux, err)

20

In [155]: #Now for some initial parameter guesses
t0 = 0.0 #time of inferior conjunction
per = 1.58040482 #orbital period -> contrained from other observation
s
rp = 0.1 #planet radius (in units of stellar radii)
a = 16.0 #semi-major axis (in units of stellar radii)
inc = 90. #orbital inclination (in degrees)
ecc = 0. #eccentricity -> Let's assume for now that the planet is no
t on an eccentric orbit
w = 90. #longitude of periastron (in degrees)
u = [0.3] #limb darkening coefficients
limb_dark = "linear" #limb darkening model -> Simple limb darkening mo
del, need to consider other models

In [156]: #initialize model and parameters
params, m = initialize_model(t, t0, per, rp, a, inc, ecc, w, u, limb_d
ark)

In [157]: #compare your initial guess with the data and make adjustments
plt.plot(t, flux) #blue
plt.plot(t, m.light_curve(params)) #green

Out[157]: [<matplotlib.lines.Line2D at 0x11c7e3910>]

In [163]: #now let's get the MCMC initialized
#initial guesses for MCMC fit parameters from your by eye fits
#for simplicity we will only fit for Rp/R*, limb darkening coefficient
, and center of transit time
guess_rp, guess_u, guess_t0 = 0.12, 0.3, 0.003
theta = [guess_rp, guess_u, guess_t0]

21

In [164]: #initialize sampler
ndim, nwalkers = len(theta), 50
sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args = (params
, m, t, flux, err))
pos = [theta + 1e-5*np.random.randn(ndim) for i in range(nwalkers)]

In [165]: #run mcmc
sampler.run_mcmc(pos,500);

In [167]: #make a pairs plot from MCMC output
import corner
samples = sampler.chain[:, 50:, :].reshape((-1, ndim)) #discard first
50 samples as burn-in
fig = corner.corner(samples, labels = ["rp", "u", "t0"])
plt.show()

22

Above you will see what is referred to as a 'corner plot', which gives you the posterior probability
distributions for your transit parameters and shows the covariances between the parameters. Take a
moment to inspect the corner plot and note any strong covariances between parameters. Think about what
the histograms are telling you about the 'best-fit' value for each parameter. Go back and increase/decrease
the value of the 'err' on your data and see how that affects the parameter distributions.

In [168]: #Now we need to derive the best-fit planet parameters and their 1-sigm
a error bars
rp_mcmc, u_mcmc, t0_mcmc = map(lambda v: (v[1], v[2]-v[1], v[1]-v[0]),
zip(*np.percentile(samples, [16, 50, 84], axis=0)))
print rp_mcmc
print u_mcmc
print t0_mcmc

(0.119101358754768, 6.0069357746411756e-05, 5.96454386467965e-05)
(0.36831275084557974, 0.0053943474324035789, 0.013640732805393685)
(0.0030180323134686134, 1.0029810048214211e-05, 9.8698143549636949e-
06)

Now that you've seen how it's done for the 'white-light' light curve, it's time to find out what kind of planet is
in your data. To produce a planetary transit spectrum, the fitting must be done as a function of wavelength.
The results from the 'white-light' light curve provide an important initial constraints. Remember that as a
function of wavelength only R /R and the limb darkening should change, the planetary orbital parameters
are not wavelength dependent. The choice of limb darkening model and whether to fix or fit for the limb
darkening parameters is widely discussed in the literature. Your choices for limb darkening should be well
justified from both a theoretical and statistical perspective. Now, FIND YOUR PLANETARY SPECTRUM!!!

p ⋆

23

Welcome! In this notebook we will step you through how to work with high-level data products that will be
produced by the time-series branch of the JWST pipeline. This exercise was compiled by Nikole Lewis
(STScI) with significant inputs from Jason Rowe (UdeM) and Jeff Valenti (STScI).

In [1]: #First let's load some useful modules
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from astropy.io import fits
%matplotlib inline

In [2]: #Let's first investigate the 2D SOSS trace images as a function of tim
e and get some info about what's in the fits file
hdulist2D= fits.open('planet1_2Dim.fits')
hdulist2D.info()

Filename: planet1_2Dim.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 44 ()
1 SCI ImageHDU 10 (2048, 256, 144) float32
2 JDMID ImageHDU 8 (144,) float64

The primary starting point for all "Level 3" processing of time-series data (spectra and photometry) are
datacubes that contain the 2D "slope" images, which have had basic corrections/calibrations applied (bias,
dark, flat, etc.). The fits file here contains primary header information, the 2D images, and a table of julien
dates (JD) that correspond to the center of each integration (time standards beyond JD such as BJD_UTC,
BJD_TT, and HJD will be provided).

In [3]: #First we'll check on the information in the primary header
primary = hdulist2D[0]
primary.header

24

Out[3]: SIMPLE = T / Fits standard
BITPIX = 16 / Bits per pixel
NAXIS = 0 / Number of axes
EXTEND = T / FITS dataset may contain extensions
IRAF-TLM= '2016-05-29T04:16:56' / Time of last modification
DATE = '2016-05-29T04:16:56.00' / Date this file was created (UTC
)
FILETYPE= 'UNCALIBRATED' / Type of data in the file
TELESCOP= 'JWST ' / Telescope used to acquire the data

 Programmatic information

TITLE = 'Exoplanet characterization in the JWST era' / Proposal ti
tle
PI_NAME = 'John Mather' / Principal investigator name

 Instrument configuration information

INSTRUME= 'NIRISS ' / Instrument used to acquire the data

 Exposure parameters

NINTS = 144 / Number of integrations in exposure
NGROUPS = 7 / Number of groups in integration
NFRAMES = 1 / Number of frames per group
GROUPGAP= 0 / Number of frames dropped between gr
oups
NSAMPLES= 1 / Number of A/D samples per pixel
TSAMPLE = 10 / Time between samples (microsec)
TFRAME = 5.49130 / Time between frames (sec)
TGROUP = 5.49130 / Time between groups (sec)
EFFINTTM= 32.9478 / Effective integration time (sec)
EFFEXPTM= 4744.48 / Effective exposure time (sec)
NRSTSTRT= 1 / Number of resets at start of exposu
re

 Subarray parameters

SUBARRAY= 'SUBSTRIP256' / Subarray used
SUBSTRT1= 1 / Number of pixels in axis 1 directio
n
SUBSIZE1= 2048 / Number of pixels in axis 1 directio
n
SUBSIZE2= 256 / Number of pixels in axis 2 directio
n
FASTAXIS= 2 / Fast readout axis direction
SLOWAXIS= 1 / Slow readout axis direction

 Aperture information

APERNAME= 'NIS-SOSSTA' / science aperture used

25

In [4]: #Now let's look at the science images and header information
sci = hdulist2D[1]
sci.data.shape

Out[4]: (144, 256, 2048)

In [5]: sci.header

Out[5]: XTENSION= 'IMAGE ' / Image extension
BITPIX = -32 / array data type
NAXIS = 3 /
NAXIS1 = 2048 /
NAXIS2 = 256 /
NAXIS3 = 144 /
PCOUNT = 0 / number of random group parameters
GCOUNT = 1 / number of random groups
EXTNAME = 'SCI ' / extension name
BUNIT = 'DN/s ' / physical units of the data array va
lues

In [6]: fig, ax = plt.subplots(figsize=(18, 2))
ax.imshow(sci.data[0,:,:], origin='lower')

Out[6]: <matplotlib.image.AxesImage at 0x1100ef590>

Above should be an image of the SOSS spectral traces in the 256x2048 subarray. What do you notice about
these spectral traces?

In [7]: #Let's use a log scale to get another view of this 2D SOSS image
from matplotlib.colors import LogNorm
fig, ax = plt.subplots(figsize=(18, 2))
ax.imshow(sci.data[0,:,:], origin='lower', norm=LogNorm())

Out[7]: <matplotlib.image.AxesImage at 0x1290db590>

26

The image above should clearly show the three-orders of the NIRISS SOSS spectra (1st, 2nd, and 3rd from
top to bottom). The 1st order covers roughly 0.7-2.8 microns, the 2nd order covers roughly 0.6-1.3 microns,
and the 3rd order covers roughly 0.6-0.85 microns. Wavelength increases to the right in the image above,
with the 1st and 2nd order overlapping at long wavelength end. What benefits and challenges do you see
with having multiple orders available for NIRISS SOSS spectra?

We will not work with extracting spectra from these 2D images in this hands-on session, but encourage you
to think about/develop spectral extraction techniques given this synthetic data. The level 3 of the time-series
branch of the JWST pipeline will perform spectral extraction and deliver spectra as function of time. The
fidelity of the extract spectra will likely evolve over time as techniques are developed/improved and
integrated into the pipeline. Keep in mind that the entire python-based JWST pipeline will be available to all
users and modules like the time-series spectral extraction can be swapped for user-defined versions.

In [8]: #Before we leave the 2D image data, let's get our JD values
jdmid = hdulist2D[2]
jdmid.data.shape

Out[8]: (144,)

In [9]: #Now let's move to the extracted spectra as a function of time
hdulist1D= fits.open('planet1_1Dspec.fits')
hdulist1D.info()

Filename: planet1_1Dspec.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 44 ()
1 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
2 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
3 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
4 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
5 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
6 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
7 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
8 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
9 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
10 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
11 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
12 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
13 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
14 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
15 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
16 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
17 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
18 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
19 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
20 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
21 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
22 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]

27

129 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
130 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
131 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
132 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
133 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
134 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
135 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
136 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
137 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
138 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
139 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
140 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
141 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
142 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
143 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]
144 EXTRACT1D BinTableHDU 17 2048R x 2C [1E, 1E]

What do you notice about the way that this data is stored compared to the 2D images?

In [10]: #Let's take a look at the primary header information
hdulist1D[0].header

28

Out[10]: SIMPLE = T / Fits standard
BITPIX = 16 / Bits per pixel
NAXIS = 0 / Number of axes
EXTEND = T / File may contain extensions
IRAF-TLM= '2016-05-29T04:16:56' / Time of last modification
DATE = '2016-05-29T04:16:56.00' / Date this file was created (UTC
)
FILETYPE= 'UNCALIBRATED' / Type of data in the file
TELESCOP= 'JWST ' / Telescope used to acquire the data

 Programmatic information

TITLE = 'Exoplanet characterization in the JWST era' / Proposal ti
tle
PI_NAME = 'John Mather' / Principal investigator name

 Instrument configuration information

INSTRUME= 'NIRISS ' / Instrument used to acquire the data

 Exposure parameters

NINTS = 144 / Number of integrations in exposure
NGROUPS = 7 / Number of groups in integration
NFRAMES = 1 / Number of frames per group
GROUPGAP= 0 / Number of frames dropped between gr
oups
NSAMPLES= 1 / Number of A/D samples per pixel
TSAMPLE = 10 / Time between samples (microsec)
TFRAME = 5.49130 / Time between frames (sec)
TGROUP = 5.49130 / Time between groups (sec)
EFFINTTM= 32.9478 / Effective integration time (sec)
EFFEXPTM= 4744.48 / Effective exposure time (sec)
NRSTSTRT= 1 / Number of resets at start of exposu
re

 Subarray parameters

SUBARRAY= 'SUBSTRIP256' / Subarray used
SUBSTRT1= 1 / Number of pixels in axis 1 directio
n
SUBSIZE1= 2048 / Number of pixels in axis 1 directio
n
SUBSIZE2= 256 / Number of pixels in axis 2 directio
n
FASTAXIS= 2 / Fast readout axis direction
SLOWAXIS= 1 / Slow readout axis direction

 Aperture information

APERNAME= 'NIS-SOSSTA' / science aperture used

29

In [11]: #Let's look at the first spectrum
spec1 = hdulist1D[1]
spec1.header

Out[11]: XTENSION= 'BINTABLE' / binary table extension
BITPIX = 8 / array data type
NAXIS = 2 / number of array dimensions
NAXIS1 = 8 / length of dimension 1
NAXIS2 = 2048 / length of dimension 2
PCOUNT = 0 / number of group parameters
GCOUNT = 1 / number of group
TFIELDS = 2 / number of table fields
EXTNAME = 'EXTRACT1D' / extension name
EXTVER = 1 / extension value
JDMID = 2458710.46502 / Julian date at integration midpoint
TFORM1 = '1E ' /Real*4 (floating point)
TTYPE1 = 'wavelength' /Label for column 1
TUNIT1 = 'micron ' /Units of column 1
TFORM2 = '1E ' /Real*4 (floating point)
TTYPE2 = 'countrate' /Label for column 2
TUNIT2 = 'DN/s ' /Units of column 2

In [12]: #Let's extract the JD from the header and read in the wavelength and c
ount rate
jd = spec1.header['JDMID']
wavelength = spec1.data.field(0)
countrate = spec1.data.field(1)

In [13]: #Let's plot the first (in time) spectrum
plt.plot(wavelength, countrate)

Out[13]: [<matplotlib.lines.Line2D at 0x12d016e50>]

30

Now that you see how to read-in/extract the first spectrum you are ready to FIND THE PLANET IN YOUR
DATA! Your first goal is to first produce a 'white-light' light curve (relative flux as a function of time). The
white-light light curve will be a quick look product for the time-series branch of the JWST pipeline. Then you
should try to produce light curves for various wavelengths (unbinned and binned).

31

