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This	talk	has	limited	scope:	
Time	series	analysis		

for	radial	velocity	and	transit	studies	
	

v Nonparametric	$me	domain	methods	
§  Nonparametric	regression	(e.g.	Gaussian	Processes	regression)	

v Parametric	$me	domain	methods	
§  ARMA	modeling	

v Nonparametric	frequency	domain	methods	
§  Lomb-Scargle	periodogram	

v Parametric	frequency	domain	methods	
§ Mul$planet	astrophysical	modeling	
	

	



HD	3651	
2	years	of	radial	velocity	measurements	
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HD 3651 P=62.257 d,   e=0.63

	
A	Sub-Saturn	Mass	Planet	Orbi$ng	HD	3651		
D.	Fischer	et	al.	2003,	ApJ	590,	1081	
	



Nonparametric	2me	domain	methods	
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Local	regressions	require	choices	of:		
	Weight	func$on:	Gaussian,	Epanichnikov,	…	
	Bandwidth:	constant,	adap$ve,	AIC	d.o.f.,	…	
	Polynomial	degree:	linear,	quadra$c,	cubic	
	Fit	criterion:	least	squares,	maximum	likelihood	
	Confidence	bands:	local	standard	devia$on,	bootstrap	

	
Gaussian	processes	regression	is	a	local	regression	es$mator	that	assumes	
normally	distributed	residuals.		This	can	be	confirmed	a^er	the	fit	is	made	
using	a	nonparametric	test	for	normality	(e.g.	Anderson-Darling).			

Reference:	
Local	Regression	
C.	Loader	
Springer	1999	
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More	data	with	parametric	astrophysical	model	
(Fischer	et	al.	2003)	

RV		modulo	orbital	
period	with	local	fit	



	Row				MJD							RV	
	[1,]	12096.11			5.72	
	[2,]	12102.02			1.23	
	[3,]	12120.89	-16.08	
	[4,]	12128.08	-26.39	
	[5,]	12133.92			5.94	
	[6,]	12157.85			6.20	
	[7,]	12158.88			2.71	
	[8,]	12159.84			0.44	
	[9,]	12160.88		-3.58	
[10,]	12161.86			2.98	
[11,]	12182.81	-13.58	
[12,]	12183.80	-23.55	
[13,]	12185.80	-18.80	
[14,]	12186.80	-19.63	
[15,]	12188.95	-15.61	
[16,]	12189.83	-19.12	
[17,]	12200.82			6.67	
[18,]	12201.83			6.77	
[19,]	12202.76			6.83	
[20,]	12203.76		12.73	
[21,]	12204.77			7.59	
[22,]	12214.77			9.07	
[23,]	12216.73			1.48	
[24,]	12218.75			4.12	
[25,]	12220.74		-8.27	
[26,]	12221.79			0.00	
[27,]	12235.70		-5.91	
[28,]	12236.76		-4.52	
[29,]	12237.73	-12.13	
[30,]	12241.64	-22.49	
[31,]	12474.92			8.35	
[32,]	12475.92			5.29	
[33,]	12476.94		-6.97	
[34,]	12477.93		-1.69	
[35,]	12478.91			1.02	
[36,]	12491.87	-18.31	
[37,]	12493.92	-29.99	
[38,]	12508.91			4.57	
[39,]	12509.84			7.87	
[40,]	12510.94		17.18	

[41,]	12511.96			5.08	
[42,]	12512.93			2.39	
[43,]	12513.93			2.58	
[44,]	12514.92		10.82	
[45,]	12515.02			7.38	
[46,]	12515.87			4.88	
[47,]	12516.92		10.10	
[48,]	12520.89			4.36	
[49,]	12522.84		11.10	
[50,]	12523.88		-0.69	
[51,]	12524.86			0.61	
[52,]	12534.87	-15.28	
[53,]	12535.82			0.30	
[54,]	12535.90	-16.28	
[55,]	12551.82	-12.82	
[56,]	12552.81	-13.87	
[57,]	12553.77		-9.29	
[58,]	12554.77		-9.36	
[59,]	12572.76			8.05	
[60,]	12574.83			7.70	
[61,]	12576.76		13.88	
[62,]	12581.74			9.56	
[63,]	12582.79			0.48	
[64,]	12583.75			7.00	
[65,]	12593.70			3.56	
[66,]	12594.75			3.65	
[67,]	12597.68			0.16	
[68,]	12599.78			4.03	
[69,]	12600.72		-1.72	
[70,]	12601.71		-6.69	
[71,]	12602.78		-3.30	
[72,]	12606.67		10.87	
[73,]	12608.74			0.43	
[74,]	12612.64	-17.36	
[75,]	12613.64	-13.00	
[76,]	12627.75		-5.35	
[77,]	12631.64		12.73	

#	Radial	veloci$es	for	HD	3651	
#	R	script,	Eric	Feigelson,	July	2016	
	
rv	<-	read.table('HD3651_rv.dat')[1:2]	
x	<-	rv[rv[,1]>12000,1]	
y	<-	rv[rv[,1]>12000,2]	
	
plot(x,	y,	pch=20,	type='l',	xlab='JD	-	2440000',	ylab='Velocity	(m/s)',		

	ylim=c(-30,25))	
points(x,	y	,	pch=20)	
text(12150,	20,	'HD	3651')	
text(12550,	20,	'P=62.257	d,			e=0.63')	
	
install.packages('locfit')		;		library(locfit)	
locfit_model	<-	locfit(y~lp(x,	nn=0.3))	
plot(locfit_model,	ylim=c(-30,25),	band='local',	col=3,		

	xlab='JD	-	2440000',	ylab='Velocity	(m/s)')		
points(xy,	pch=20,	cex=0.5)	
	
locfit_phase	<-	locfit(y~lp((x	%%	62.257),	nn=0.3))	
plot(locfit_phase,	ylim=c(-30,20),	band='local',	col=3,		

	xlab='JD	-	2440000	mod	P=62.257d',	ylab='Velocity	(m/s)')	
points(x	%%	62.257,	y,	pch=20)	

Data	and	R	script	for	plots	

Fischer	et	al.	2003	
For	an	R	tutorial	on	nonparametric	density	es$ma$on	see	
www2.astro.psu.edu/users/edf/San$ago_2016	



Parametric	2me	domain	methods	
A	common	task	is	the	search	for	periodicity	from	exoplanetary	orbits	
in	stellar	$me	series.		Nonparametric	periodograms	include	phase	
dispersion	minimiza.on	(Stellingwerf	1977)	and	minimum	strength	
length	(Dworetzky	2003).		Parametric	periodograms	include	box	least	
squares	(Kovacs	et	al.	2002)	for	transit	detec$on.			

	
	

A	major	impediment	is	intrinsic	stellar	variability,	usually	due	to	
magne$c	ac$vity.		Local	regression	can	remove	trends	but	is	not	
op$mized	for	stochas$c	autocorrelated	varia$ons.		For	this,	
astronomers	should	be	using	parametric	autoregressive	models	when	
evenly	spaced	data	is	available.			



Autoregressive	models	

GARCH:	Generalized	autoregressive	condi$onal	heteroscedas$c	models,	used	
to	predict	the	vola$le	stock	market	
	

ARFIMA:	A	powerful	family	of	models	trea$ng	nonsta$onarity	(trends),		
short-	and	long-memory	processes.		ARFIMA	models	are	extremely	effec$ve	
in	reducing	correlated	variability	in	Kepler	stars	(Caceres,	Feigelson,	et	al.)	

	

Hierarchy	of	complexity:	
	AR	(autoregressive):	current	value	depends	on	recent	past	values	
	MA	(moving	average):	current	change	depends	on	recent	past	changes	
	I	(integrated):	difference	operator,	removes	arbitrary	trends	
	F	(frac$onal):	long-memory	1/fα-type	`red	noise’	
	H	(heteroscedas$c):	current	variance	depends	on	recent	past	variances	
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Sample Lightcurve with Fit & Residuals
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Maximum likelihood 
    ARFIMA model 

Residuals 

But  AR models transform        
box-shaped transit signal into 
double-spike signal 

KARPS:	Kepler	AutoRegressive	Planet	Search	
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KARPS	early	results	

ARMA+TCF recovers 86% of DR24 Kepler periodic variables (KOIs, black 
dots). Others are not confirmed (red) or a new period is suggested 
(green).   



Astrophysical	2me	domain	methods	

Firng	astrophysical	models	to	$me	domain	radial	velocity	and/or		
transit	$me	series	is	very	common.	These	are	nonlinear	
regression	models:		
	
	
	
“The	expecta$on	(mean)	of	the	dependent	response	variable	Y	
for	a	given	value	of	the	indepenent	variable(s)	X	is	equal	to	a	
specified	func$on	f	which	depends	both	on	X	and	a	vector	of	
parameters	θ,	plus	a	random	error	(scaver).		



Here,	this	2-planet	
orbital	model	a	12	
parameters	in	θ:	for	
each	planet,	the		
semi-major	axis,	
eccentricity,	
inclina$on,	
ascending	node	
longitude,	argument	
of	periastron,	and	
true	anomaly	

Wright	et	al.	(2009)	



Problems	with	regression		
in	the	astronomical	literature		

•  Improper	use	of	minimum	χ2	
fi`ng	weighted	by	measurement	
errors			Valid	only	if	measurement	
errors	are	the	sole	source	of	
scaver.	Difficulty	with	model	
selec$on.		

•  Inadequate	residual	analysis		Variance	frac$on?	(adjusted	R2	&	
Mallow’s	Cp)	Goodness-of-fit	(Anderson-Darling	test)	Structure?	(Local	
regression)	Autocorrelated?	(Durbin-Watson	test,	ARMA	model)	
Normally	distributed?	(Anderson-Darling	test,	quan$le	regression)		
Outliers?	(Cook’s	distance	plot)		



Inadequate	model	valida2on		Goodness-of-fit	test	with	
Kolmogorov-Smirnov	or	(more	sensi$ve)	Anderson-Darling	
nonparametric	1-sample	tests	
	
Weak	model	selec2on		Penalized	likelihood	measures	for	model	
elabora$on	and	parsimony	
	
Underuse	of	mul2variate	regression		Not	a	sequence	of	bivariate	
analyses	
	
Sensi2vity	to	arbitrary	transforma2ons		Science	result	should	not	
depend	on	units	or	log-transform	
	
Overuse	of	Bayesian	inference		If	no	prior	informa$on	is	available	
and	science	is	based	on	the	mode	(maximum)	of	the	posterior,	
then	it	is	maximum	likelihood	es$ma$on.		Either	MCMC	or	
standard	op$miza$on	methods	(steepest	descent,	simplex,	EM,	…)	
can	be	used.			



Nonparametric	frequency	domain	methods	

	
	

A	Fourier	
periodogram	
for	HD	3651	



Fourier	analysis	
Spectral	analysis	reveals	nothing	of	the	evolu$on	in	$me,	but	
rather	reveals	the	variance	of	the	signal	at	different	frequencies.		
The	power	spectral	density		or	periodogram	is	the	modulus	
squared	of	the	Fourier	transform	of	a	$me	series	(Fourier	1807,	
Schuster	1898).		
	
Fourier	analysis	is	valid	only	under	restric$ve	assump$ons:	an	
infinitely	long	dataset	of	equally-spaced	observa$ons	of	a	
sta$onary	process	consis$ng	of	homoscedas$c	Gaussian	noise	
with	purely	periodic	signals	of	sinusoidal	shape.	Even	the	it	is	
formally	an	inconsistent	es$mator.		
	
The	Lomb-Scargle	periodogram	is	a	generalized	Fourier	
periodogram	for	unevenly	spaced	data	widely	used	in	astronomy.			
	
	
	

Recommended	text:	
D.	B.	Percival	and	A.	T.	Walden	(1992)		
Spectral	Analysis	for	Physical	Applica.ons	



Improving	the	periodogram	
The	signal-to-noise	of	a	periodogram	can	be	improved	by	
smoothing	(in	the		frequency	domain).		Tapering	(in	the	$me	
domain)	that	shrinks	signal	amplitude	at	the	ends	of	the	$me	
series	reduces	spectral	leakage.			
	
Filtering	the	$me	domain	data	prior	to	spectral	analysis	is	also	
helpful,	par$cular	removal	of	aperiodic	long-term	trends	and	
autoregressive	behaviors		using	local	regression	and	ARMA	
techniques.	
	

Astronomers	can	benefit	from	filtering	their	3me	series,		
smoothing	and	(mul3)tapering	their	Fourier/L-S	periodograms		

	
However,	these	steps	do	not	alleviate	aliasing	of	periodici3es		

due	to	unevenly	spaced	observa3ons			



False	Alarm	Probabili2es	
It	is	extremely	difficult	to	derive	the	significance	of	a	weak	
periodicity	from	any	type	harmonic	analysis.		This	is	par$cularly	
true	for	unevenly	spaced	data	with	a	nonrandom	cadence.		Do	not	
trust	analy3cal	es3mates	(P	~	exp(dν/σ

2)	for	FAPs,	as	their	
mathema$cal	deriva$on	is	very	restric$ve	and	rarely	applies	to	real	
data	(e.g.	Koen,	MNRAS	1990).			
	
I	believe	it	is	essen$al	to	make	simula$ons	keeping	the	observing	
$mes	fixed:	
•  Permute	or	bootstrap	the	data	a^er	trend	removal			
•  If	autocorrela$on	is	present	(Durbin-Watson	test),	the	process	

should	be	characterized(ARMA	modeling)		and	simulate.		
•  	If	a	periodicity	may	be	present,	it	should	be	simulated.			
The	ensemble	of	simulated	periodograms	(Fourier,	L-S,	PDM,	MSL,	
…)	can	then	be	compared	to	the	observed	periodogram.				



Final	comments	

Astronomers	are	o^en	familiar	with	only	a	narrow	suite	of	$me	series	
procedures.		A	vast	methodology	has	been	developed	for	signal	
processing	&	econometrics.		Unfortunately,	livle	applies	to	irregularly	
spaced	observa$ons.			
	
Exoplanetary	research	has	an	acute	need	for	powerful	$me	series	and	
regression	methods.		Knowledge	and	use	of	sophis$cated	sta$s$cal	
concepts	and	methods	can	improve	the	reliability	of	our	scien$fic	
results.			
	


