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Giant Planets are More Common Around Metal Rich Stars

RV Giant Planets 
(Johnson et al. 2010)

Kepler (Buchave et al. 2012)

Formation of Solid  
Planetesimals Holds the Key! 



Four Stages of Planet Formation: 
The Core Accretion Model

1. Dust to  
Planetesimals

3. Growth of 
Gas Giant  
Atmospheres

2. From 
Planetesimals 
to Planets & 
Cores

4. Planet 
Migration and 
Scattering
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Planetesimal Formation Spans Many Orders of 
Magnitude and Different Processes
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Key Aspects of Planetesimal Formation: 
Starting Small in a Gas Disk

• Surface gravity is weak 

• Sticking is important for dust growth 

• Aerodynamic gas drag is crucial 

• Radial drift introduces a “meter-size” barrier 

• Resolution: particle concentration and gravitational 
collapse



Radial Drift Timescale Constraints 
(aka the “Meter-Size Barrier”)

gr = M★/r2 -ρ-1∂P/∂r


boulders

dust

planetesimals

sub-Keplerian gas rotation

max 50 m/s headwind

optimal coupling gives  
fastest drift:  

1 AU/(50 m/s) ~ 100 yr



Drag Forces in a “Minimum Mass” Disk Model
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Climbing the size ladder
Chiang & Youdin  
(2010, AREPS)
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Figure 4
Scaling the size ladder from dust to planets. Physical processes that either grow (white circles) or concentrate solids (yellow) are
illustrated. Numbers advance from the earliest to latest stages of planet formation. The relevance of a given mechanism tends to be
restricted to a certain range of particle sizes, indicated crudely by the bars on the ladder. The ranges shown are subject to debate and
actively researched. The least-explored is shown by a dashed bar: drag-assisted GI (Section 5.2). Dimensionless stopping times
τs ≡ !Kts are shown for r = 1 AU; some processes are aerodynamic and depend more on τs than on particle size.

In principle, GI does not always produce bound fragments. Transient spiral arms or more
chaotic gravitoturbulence can also result. Fragmentation requires that collapsing material cools—
i.e., loses the excess energy gained by compression—on timescales shorter than an orbital period
(Gammie 2001). Sufficiently fast cooling is a serious constraint for gas disks (Matzner & Levin
2005, Rafikov 2005), but it should not impede planetesimal formation because aerodynamic drag
and inelastic collisions provide efficient cooling channels, as discussed further in Section 8. Con-
sequently, the onset of GI supersedes cooling as the main requirement for planetesimal formation.
We now turn to the related issue of how gas drag alters the criterion for GI.

5.2. Drag-Assisted Gravitational Instability
The stability properties discussed above pertain to dust treated as a single frictionless fluid. How-
ever, gas-dust interactions can change this picture qualitatively. The simplest modification is to
introduce drag terms to the momentum equations (Ward 1976, 2000; Coradini et al. 1981; Youdin
2005):
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Growth by Sticking

Fragmentation 
(Blum & Meunch 1993)

Erosion 
(Colwell 2003)

Many Outcomes 
(Guttler et al. 2010)
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Figure 7. Image sequence of a fragmenting collision at a velocity of 47 cm s−1. The upper aggregate is destroyed, while the lower one gains 0.6% of its original
volume.

(An animation and a color version of this figure are available in the online journal.)

calculated, but the strength of fragmentation µ is the charac-
terizing parameter that we determined. It is defined as µi =
Mf,i/M0,i, where Mf,i is the largest fragment and M0,i is the
total mass of the aggregate i (with i = 1 or 2) before fragmenta-
tion. The collision velocity was determined in the same way as in
Section 3.1, and the size of the largest fragment was measured
in one or more representative images from the photo camera.
Again, these images were binarized, and the cross-sectional
areas of the fragments were fitted with ellipses of the same
expanse. The lower estimate for the fragment volume follows
from an ellipsoid where the ellipse is rotated around the long
axis, and the upper estimate is for rotation around the short axis.
Our best estimate is the mean value between those two, and the
error follows from the actual values. To calculate the mass of the
fragments, we assumed that the volume-filling factor remained
unchanged. The results of the fragmentation strength (i.e., the
relation µ(v)) are discussed in Section 4.

The slowest impact velocity where fragmentation occurred
was at 24 cm s−1, and the fastest bouncing collision was at
37 cm s−1. In Figure 7, a sequence of a collision at 47 cm s−1

is presented. This is a typical collision when the velocity
is below 187 cm s−1; at these velocities, only one aggregate
fragmented, while the other one remained intact and gained
mass. This roughly conically shaped dust pile is marked with
a green circle in the last image of Figure 7. We assumed this
pile to be rotationally symmetric, so we could easily compute
its volume: we rotated the image such that the long axis was
vertical and measured the width of the pile for each line. Due
to the symmetry, each line represented a disk with a height of
1 pixel, and by summing these disks we got the volume. Again,
we assumed that the volume-filling factor was unchanged to
get the mass of the dust pile. In the example in Figure 7, the
intact aggregate has grown by 0.57% of its own mass. The mass
gain for all six experiments ranges from 0.05% to 1.1%, and the
velocity dependence is presented in Section 3.3. There was no
conclusive result regarding whether the upper or lower particle
fragmented, because these two possibilities were evenly split
between the six experiments. However, when only one particle
fragmented, its maximum velocity was about 190 cm s−1. The
only exception was one collision at v = 47 cm s−1in which both
aggregates fragmented. For all collisions above 190 cm s−1, both
particles fragmented.

Depending on collision velocity, we qualitatively found the
three different collisional outcomes that comprise bouncing,

Figure 8. Strength of fragmentation µ over the impact velocity for all drop-
tower collisions. The axis for µ > 1 was stretched for better visibility. µ is
plotted for each individual sphere to get two data points for each experiment.
The values for fragmentation (red) are fitted with a power law (dash-dotted
line), and those for mass gain (green) are fitted linearly. The black dashed line
at µ = 0.5 denotes the limit for catastrophic fragmentation (cf. Section 4).
(A color version of this figure is available in the online journal.)

fragmentation with mass transfer, and complete fragmentation.
In Figure 8, we present a conclusive overview of the outcomes in
the drop-tower experiments. The strength of fragmentation for
each individual sphere in a collision µi is plotted as a function of
the collision velocity. In a bouncing collision (previous section),
the mass remains constant, so the value for these collisions
is unity. Each fragmenting collision yields two µ values, i.e.,
one for each aggregate. The disruptive collisions are given by
the red squares, and those that lead to mass growth yield one
negative and one positive µ value (red and green triangles) for
the disrupted and grown aggregates, respectively. We adopt a
power law for the values with µ < 1, which is given by

µ−(v) =
(

v

(0.18 ± 0.04) m s−1

)−0.52±0.09

(5)

and shown as a red dash-dotted line. The vertical axis for the
collisions with mass gain is linear and stretched, and we found
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Mass Transfer 
(Beitz et al. 2011)
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long-duration microgravity environment available on the ISS. In particular our experimental 
program will address the following questions: 
• Low velocity fragmentation probability. We need to go beyond simple pictures in which 

all aggregates fragment above some threshold collision speed and none below.  The question 
we intend to address is how the probability of fragmenting varies as a function of the 
impactor mass and speed. 

• Dust aggregate abrasion. Related to this is the question of how quickly do dust aggregates 
of different porosities erode in low-speed collisions with impactors of different masses. 
Abrasion at impact velocities below the fragmentation limit has not been intensively studied 
before, but our preliminary experiments show that it is an important and so far neglected 
process. 

• Chondrule rims. Collisions can transfer mass from a dust aggregate to a chondrule (Beitz 
et al. 2012). So far, this process has been studied in a few single collisions. How does the 
mass transfer depend on the collision parameters, and does a succession of such collisions 
lead to structures compatible with chondrules and their rims? 

• The role of chondrules in planetesimal formation. The experiments by Beitz et al. (2012) 
have also shown that chondrules can act as “condensation seeds” for larger conglomerates. 
How does mixing chondrules with aggregates affect the overall evolution of the populations 
of both?  Do collisions with the chondrules break the aggregates apart, or leave them more 
compact? Are chondrules even required to form 
larger bodies up to planetesimal sizes? 
 

 
 
 The experiments in the parameter space 
indicated by the solid black box in Figure 1 will 
expand our knowledge of collision outcomes to lower 
speeds, rarer events, and collisions between aggregates with a range of structural properties 
including different proportions of dust and chondrules. We will extract full value from the 
results by applying the broad set of collision data to numerically model the particle size 
distribution near the meter-size barrier and through planetesimal growth, and tie the particle 

Figure 1: The dust aggregate 
collision model by Güttler et al. 
(2010) with recent modifications. 
The green, yellow and red regions 
mark the parameter space of 
collision velocity and dust 
aggregate mass where sticking, 
bouncing and fragmentation 
dominate. The black box shows the 
parameter space to be explored by 
In-SSPACE. In-SSPACE will probe 
the sticking-bouncing transition. 
(Entering the fragmentation zone 
would produce small fragments and 
render the experiment opaque.) 
Both the sticking and bouncing 
regions are crucial for 
understanding planetesimal 
formation and have not been 
explored before.  
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inefficient growth 
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compounds 

meter-size barrier



The cm-size barrier of bouncing and fragmentation
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volume.
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at µ = 0.5 denotes the limit for catastrophic fragmentation (cf. Section 4).
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Three modes of particle concentration 

1. Static 

2. Passively Dynamic 

3. Spontaneous 

19
43
JB
AA
..
.5
3.
.1
81
E

“local condensations” 
(Edgeworth 1943)



1. Static Concentration: 
    Particles collect in long-lived pressure maxima.
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Ring  (Whipple 1972) Vortex  (Barge & Sommeria 1995)

2 van Dishoeck et al.

Figure 1. ALMA continuum images of 8 transitional disks; the colors are scaled
to the peak emission in each image but the azimuthal contrast varies greatly from
disk to disk (see text). Top: SR 21 (B9; P14), HD 135344B (B9; P14), DoAr44 (B7;
vdM15b), LkCa15 (B9; vdM15a); Bottom: IRS 48 (B9; vdM15b), HD 142527 (B7;
Cassasus et al. 2013), SR 24S (B9; vdM15a), J1604-2130 (B7, Zhang et al. 2014).
The horizontal white bar indicates a 30 AU scale.

2. Dust: images and models

Figure 1 presents a gallery of the millimeter-sized dust emission from a number of
transitional disks to put our four sources in context. It is clear that there is a wide
variety of dust structures: some souces such as DoAr44 and J1604-2130 show very
symmetric (inclined) dust rings with only a ∼20% variation in brightness across the
ring. Other sources such as HD 135344B and SR 21 have lopsided structures with a
factor of ∼2 variation. The most extreme cases are Oph IRS 48 and HD 142527 which
show highly asymmetric dust continuum emission with azimuthal contrasts of >100
and ∼30, respectively. In contrast, the small micron-sized dust grains are distributed
much more symmetrically along the IRS 48 ring (Geers et al. 2007, vdM13).

In general, these dust structures are well modeled by dust traps caused by a gas
pressure bump in which the dust particles accumulate and grow (e.g., Barge & Somme-
ria 1995, Klahr & Henning 1997, Pinilla et al. 2012). One exciting possibility is that the
pressure bumps are the result of planet-disk interactions and thus allow characterization
of the unseen planets: the efficiency of the dust trapping (largest grain size produced)
and the location of the dust depend on the orbit and mass of the companion, as well
as on the turbulence in the disk. However, alternative models such as pressure bumps
triggered by instabilities at the edges of dead zones have also been invoked and dust
images alone cannot readily distinguish between these options (e.g., Regály et al. 2013,
Flock et al. 2015).

The strong azimuthal asymmetries for IRS 48 and HD 142527 can be explained
by the presence of a long-lived (∼ 105 yr) vortex caused by a Rossby wave shearing
instability at the steep gas density edges (e.g., Ataiee et al. 2013). Such vortices de-
velop only under certain conditions and require low disk viscosity. Which particles get
trapped in the vortices depends on their Stokes number, which in turn is tied to the local
gas density.

Seen by ALMA?!   
(van Dishoeck et al. 

2015)

 sources: dead zone 
boundaries, snow 
lines, zonal flows, 

spiral arms and more



2. Passively Dynamic, i.e. Turbulent Concentration: 
     Particles concentrate briefly by interacting with eddies. 

“dust devils” are dynamic, but a different effect 
(credit: Joseph Brauer)



2. Passively Dynamic, i.e. Turbulent Concentration: 
     Particles concentrate briefly when expelled from eddies. 

L.-P. Wang and M.  R. Maxey 
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FIGURE 12 (a). For caption see facing page. 

second plot of figure 12 gives the vector components of flow velocity field on the same 
plane together with some selected particle velocity vectors. The higher concentration 
' sheet' formed by the clustered particles is located precisely in the channel-like, 
downflow regions in the velocity field which form between neighbouring regions of 

vorticity. This is a direct reason for the increase in the particle mean settling rate, 
consistent with the proposed second implication. 

The reason for this preferential sweeping is illustrated by figure 13. Consider a heavy 
particle settling through a flow region with three local vortical structures as shown. The 
inertial bias implies that when encountering a vortical structure, the particle does not 
move along a flow streamline and has to make its path along the periphery of the 
vortical structure. With this in mind, now suppose the particle approaches the first 
vortical region at point A ,  the local induced flow velocity will move the particle to the 
right and thus the particle passes the first vortical region on the right, the downflow 
side. The process repeats as the particle approaches the second vortical region at point 
B. The particle may move to the right- or to the left-hand side of the region according 
to the local direction of fluid rotation. In either case, the particle tends to travel on the 
downflow side. Should a particle start to be swept upward by the local flow, for 
example, near the bottom of a vortical structure, it would begin to be entrained within 
the vortex and follow a closed path. This is countered by the inertial bias which causes 

2n 

Settling velocity and concentration distribution of particles 53 

FIGURE 12. (a) The position and velocity plots at the second time frame shown in figure 11.3167 
particles are found near the slice, i.e. in the region n-0.58 < xg < n+0.56, S is the grid spacing. The 
starting point of each vector arrow is the particle’s position and the length of an arrow represents the 
relative magnitude of the velocity. (b) The vector velocity field (dot-line arrow) of the flow in the same 
plane overlaid by particle velocity vector (solid-line arrow) for those (621) particles within a distance 
of 10% grid spacing. 

the particle to curve outwards away from the vortex. This response is surprisingly 
similar to the particle motion in cellular flows (Maxey & Corrsin 1986) even though 
these are steady and laminar. Without particle inertia there is no net effect on the 
average settling rate in a statistically homogeneous flow. In short, the preferential 
sweeping is due to the inertial bias, the local induced velocity field, and the fact that 
the particles approach them usually from above. In a turbulent flow the configuration 
of the flow structures changes with time and thus the formation of long particle patches 
depends on the relative persistence of the instantaneous structures. Ruetsch & Maxey 
(1992) examined the ability of the intense localized flow structures to mix a passive 
scalar. They found the persistence rather than the intensity of certain physical flow 
quantities, in this case the local straining rate, has a dominant effect on the generation 
of intense scalar gradient. Similarly, one may argue that persistent but not necessarily 
intense vortical structures can have a significant effect on the local particle transport. 
According to Hunt et al. (1987), a large part of a turbulent flow field may be classified 

Are concentrations long-lived and massive enough to 
form planetesimals? 

(Cuzzi et al. 2008; Pan et al. 2011; Hopkins 2014) 

(Wang & 
Maxey 
1993)



3. Spontaneous:  Particles trigger their own      
    concentration via the streaming instability
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The streaming instability: 
Complex behavior from simple ingredients

Here, however, we are concerned with local and more rapid
consequences of orbital drift. By analogy with the two-stream
instability in plasma physics (Spitzer 1965), coupling between
interpenetrating streams destabilizes linear waves. In our case
the streams interact by drag forces, not electric fields. Our model
does not include self-gravity. Nevertheless, unstable waves gen-
erate particle-density perturbations. In principle, these pertur-
bations could be relevant to planetesimal formation, for instance
by raising the particle density to a point where self-gravity in-
duces collapse of the perturbations. However, we caution that
the ‘‘real world’’ manifestation of particle-gas coupling may
differ significantly from our model because of several simpli-
fications. We ignore vertical structure in our background state,
so our system is effectively an infinite cylinder and not a thin
disk. Such an approximation may be warranted for vertical wave-
lengths smaller than disk scale heights. Furthermore, our model
is linear, laminar, and inviscid, although a possible nonlinear
outcome of the instability is weak turbulence.

This paper is organized as follows. Model equations and as-
sumptions, for both steady state and perturbed motions, are pre-
sented in x 2. Growth rates arising from the sixth-order dispersion
relation are numerically analyzed in x 3. The relation between
growth rates and wave speeds is studied in x 3.3 by analogy with
Howard’s semicircle theorem. Eigenfunctions of vertically stand-
ing waves are constructed in x 4, allowing visualization of the
fluid motions. An approximate cubic dispersion that reproduces
most features of the growing modes is derived in x 5, allowing
analytic investigation to complement the results of x 3. Astro-
physical applications considered in x 6 include particle concen-
tration (x 6.1) and a comparison of growth rates to steady state
drift (x 6.2). We compare our work to other studies of dust-layer
dynamics in x 7. A summary and conclusions are given in x 8.

2. BASIC EQUATIONS

Our gas and particle ‘‘fluids’’ obey continuity and Euler
equations for the evolution of particle (Vp) and incompressible1

gas (Vg) velocity, here presented in a nonrotating frame:

@!p
@t

þ:= (!pVp) ¼ 0; ð1Þ

:=Vg ¼ 0; ð2Þ
@Vp

@t
þ Vp =:Vp ¼ %!2

Kr%
Vp % Vg

tstop
; ð3Þ

@Vg

@t
þ Vg =:Vg ¼ %!2

Krþ
!p
!g

Vp % Vg

tstop
% 9P

!g
; ð4Þ

where P is the gas pressure, !p and !g are the particle and gas
spatial densities, respectively, and !K / r%3=2 is the Keplerian
orbital frequency at cylindrical radius r (see Table 1 for definitions
of symbols). We ignore vertical stratification and self-gravity for a
simpler analysis, avoiding in particular the vertical settling and
stirring of particles. The particle stopping time tstop is conveniently
independent of !p , Vp , and Vg for the small particles (rT1 m at
1 AU) of interest prior to planetesimal formation. Epstein’s law

t
Ep
stop ¼

!sa

!gcg
ð5Þ

applies when a < (4=9)kmfp, where a is the particle radius, kmfp

is the gas mean free path (and kmfp & 1 cm at 1 AU), cg is the gas

sound speed, and !s denotes the material density of the solid.
Particles larger than 4

9 kmfp but small enough that the Reynolds
number of the flow past the solid, Re ' 4ajVp % Vgj=(cgkmfp),
is less than 1 obey Stokes’ law:

tStstop ¼
4!sa2

9!gcgkmfp
: ð6Þ

For generality we use the dimensionless stopping time parameter

"s ' !Ktstop ð7Þ

instead of referring to specific particle sizes and disk models.
In this context,2 fluid description of particle motions (as

opposed to the kinetic theory approach) requires that solids be
tightly coupled to gas. The criterion "sT1 ensures strong cou-
pling to dynamical perturbations, while !tstopT1 suffices for
disturbances of arbitrary frequency, !. We do not consider
"s > 1.
Since relative motions between solids and gas are slow

compared to center-of-mass (COM) velocities (in equilibrium
and for perturbations), we express equations (3) and (4) in terms
of relative motion, "V ' Vp % Vg, and COM motion, V '
( !pVp þ !gVg)=!, with ! ¼ !p þ !g being the total density:

@V

@t
þ V =:V þ F("V2) ¼ %!2

Kr%
9P

!
; ð8Þ

@"V

@t
þ V = :("V )þ"V = :V þ G("V2) ¼ % !

!g

"V

tstop
þ 9P

!g
:

ð9Þ

TABLE 1

Symbols

Symbol Definition Meaning

tstop ................... Eqs. (5) and (6) Particle stopping time

" s ...................... !tstop Dimensionless stopping time

!p, !g ................ . . . Particle and gas space densities

!........................ !p + !g Total density

fp , fg .................. !p /!, !g /! Particle and gas fractions

! ....................... . . . Complex wave frequency

s, !< ................. =(!), <(!) Growth rate and wave frequency

vwave ................. !< /kx Radial wave (phase) speed

kx , kz ................. . . . Radial and vertical wavenumbers

k........................
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2z

p
Wavenumber

Kx , Kz ............... kx#r, kz#r Dimensionless wavenumbers

#........................ Eq. (16) Pressure parameter

r ........................ . . . Cylindrical disk radius

x, y, z................ . . . Rotating Cartesian grid

VK ..................... !Kr Keplerian circular speed

!....................... (1 % fg#)!K COM orbital frequency

Vp , Vg ............... . . . Particle and gas fluid velocities

V ....................... fpVp + fgVg COM velocity

"V.................... Vp % Vg Relative velocity

v........................ Eq. (20) Perturbed COM velocity

"v .................... Eq. (21) Perturbed relative velocity

$........................ Eq. (22) Perturbed density

h........................ Eq. (23) Perturbed pressure/enthalpy

2 A fluid description might also be possible given frequent interparticle
collisions, but for small solids in a gas disk the stopping time is shorter than
the collision time.

1 Since motions are very subsonic, this assumption filters sound waves from
the analysis.
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Two-way drag forces & 
Radial pressure gradient 
(Youdin & Goodman 2005) 

Disc

Simulation box

Local box simulations of 
gas & “super”-particles 
(Youdin & Johansen 2005, 
Johansen et al. 2007, etc; 

Bai & Stone 2010) 



Particles trigger their own concentration via the 
streaming instability

feeds off of 
radial drift 

(Johansen &  
Youdin 2007) 



Conditions for strong 
particle concentration

1. Particle sizes near optimal coupling,   
τs  ≈ 0.1-1.0


2. Particle-gas ratio, Z ≳1%


• varies w/ radial pressure gradient 
(Bai & Stone, 2010b)


• exoplanet-metallicity correlation? 


• Role of box size and boundary 
conditions?  See poster by Rixin Li

(Johansen, Youdin & Mac Low 2009)
“Sub-Solar:” 

weak clumping
“Super-Solar:” 

strong clumping

Particle density: 
radius vs. height (top) 

radius vs. time (bottom)
τs = 0.1-0.4, 

3-12 cm @ 5 AU



Streaming Inst. triggering planetesimal formation 

vorb

Gravitational  
collapse from 
~few cm-sizes 
into ~100 km, 
planetesimals 

(Simon et al.,  
in prep; 

also Johansen, 
Youdin & MacLow 
2009; Johansen et 

al 2007, 2012)



The bouncing and fragmentation barriers remain
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• What if particles don’t grow 
large enough, to τs  ≈ 0.1-1.0? 

A. Less gas 

B. Look at interplay with 
other mechanisms 

• pressure bumps 

• direct gravitational 
instability (Safronov ’69, 
Goldreich & Ward ’73)

Goal:  
~10 cm @ 1 AU,                                      
~mm @ 30 AU



Slow “secular” gravitational instabilities collect 
small particles into wide rings

• Current studies analytic        
(Ward 1976; Youdin 2005, 2011; Shariff & 
Cuzzi 2011, Takahashi & Inutsuka 2014) 

• Long time and length scales 

• Opportunity to explain 
observed disk structures

image: ALMA
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Particle-particle sticking
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thin sublayers

Streaming instabilities clump 
particles

Gravitational 
instability assisted by drag

Gravitational collapse
triggered by turbulent 
clumping
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Figure 4
Scaling the size ladder from dust to planets. Physical processes that either grow (white circles) or concentrate solids (yellow) are
illustrated. Numbers advance from the earliest to latest stages of planet formation. The relevance of a given mechanism tends to be
restricted to a certain range of particle sizes, indicated crudely by the bars on the ladder. The ranges shown are subject to debate and
actively researched. The least-explored is shown by a dashed bar: drag-assisted GI (Section 5.2). Dimensionless stopping times
τs ≡ !Kts are shown for r = 1 AU; some processes are aerodynamic and depend more on τs than on particle size.

In principle, GI does not always produce bound fragments. Transient spiral arms or more
chaotic gravitoturbulence can also result. Fragmentation requires that collapsing material cools—
i.e., loses the excess energy gained by compression—on timescales shorter than an orbital period
(Gammie 2001). Sufficiently fast cooling is a serious constraint for gas disks (Matzner & Levin
2005, Rafikov 2005), but it should not impede planetesimal formation because aerodynamic drag
and inelastic collisions provide efficient cooling channels, as discussed further in Section 8. Con-
sequently, the onset of GI supersedes cooling as the main requirement for planetesimal formation.
We now turn to the related issue of how gas drag alters the criterion for GI.

5.2. Drag-Assisted Gravitational Instability
The stability properties discussed above pertain to dust treated as a single frictionless fluid. How-
ever, gas-dust interactions can change this picture qualitatively. The simplest modification is to
introduce drag terms to the momentum equations (Ward 1976, 2000; Coradini et al. 1981; Youdin
2005):

∂v′
r

∂t
− 2!v′

φ = −c 2

#

∂#′

∂r
− ∂$′

∂r
− v′

r

ts
(27)
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SS evidence for 
Gravitational Collapse

Comets formed in solar-nebula instabilities! – An experimental
and modeling attempt to relate the activity of comets to their
formation process
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a b s t r a c t

When comet nuclei approach the Sun, the increasing energy flux through the surface layers leads to sub-
limation of the underlying ices and subsequent outgassing that promotes the observed emission of gas
and dust. While the release of gas can be straightforwardly understood by solving the heat-transport
equation and taking into account the finite permeability of the ice-free dust layer close to the surface
of the comet nucleus, the ejection of dust additionally requires that the forces binding the dust particles
to the comet nucleus must be overcome by the forces caused by the sublimation process. This relates to
the question of how large the tensile strength of the overlying dust layer is. Homogeneous layers of
micrometer-sized dust particles reach tensile strengths of typically 103 to 104 Pa. This exceeds by far
the maximum sublimation pressure of water ice in comets. It is therefore unclear how cometary dust
activity is driven.

To solve this paradox, we used the model by Skorov and Blum (Skorov, Y.V., Blum, J. 2012. Icarus 221,
361–11), who assumed that cometesimals formed by gravitational instability of a cloud of dust and ice
aggregates and calculated for the corresponding structure of comet nuclei tensile strength of the dust-
aggregate layers on the order of 1 Pa. Here we present evidence that the emitted cometary dust particles
are indeed aggregates with the right properties to fit the model by Skorov and Blum. Then we experimen-
tally measure the tensile strengths of layers of laboratory dust aggregates and confirm the values derived
by the model. To explain the comet activity driven by the evaporation of water ice, we derive a minimum
size for the dust aggregates of!1 mm, in agreement with meteoroid observations and dust-agglomeration
models in the solar nebula. Finally we conclude that cometesimals must have formed by gravitational
instability, because all alternative formation models lead to higher tensile strengths of the surface layers.

! 2014 Elsevier Inc. All rights reserved.

1. Introduction: formation scenarios of planetesimals and
cometesimals

It is now well established that dust inside the snow line of the
solar nebula quickly coagulated into millimeter- to centimeter-
sized agglomerates due to direct sticking in collisions (Güttler
et al., 2010; Zsom et al., 2010). The further growth to planetesi-
mal-sized objects is still under debate, with two major scenarios
under consideration: the mass transfer scenario (1) and the gravi-
tational instability scenario (2).

(1) As direct sticking is mostly prevented by bouncing among
the dust aggregates (Blum and Münch, 1993; Langkowski et al.,

2008; Weidling et al., 2009, 2012; Beitz et al., 2012; Schräpler
et al., 2012; Deckers and Teiser, 2013), only those particles collid-
ing with velocities slower than the sticking-bouncing transition
can further grow, whereas the fastest collisions in the ensemble
lead to fragmentation with mass transfer (Windmark et al.,
2012a,b; Garaud et al., 2013). This latter process has been exten-
sively studied in the laboratory (Wurm et al., 2005; Teiser and
Wurm, 2009b,a; Güttler et al., 2010; Kothe et al., 2010; Teiser
et al., 2011) and is now well established for aggregates consisting
of micrometer-sized silicate grains. It has been shown that in prin-
ciple planetesimals can form by this process (Windmark et al.,
2012a,b; Garaud et al., 2013) although the timescales are rather
long and details about counteracting processes (e.g., erosion;
Schräpler and Blum, 2011) need to be clarified.

(2) Alternatively, Johansen et al. (2007) showed that cm-sized
particles can be sufficiently concentrated by the streaming

http://dx.doi.org/10.1016/j.icarus.2014.03.016
0019-1035/! 2014 Elsevier Inc. All rights reserved.
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Table 3
Transformed Johnson/cousins magnitudes and colors.

Object Primary Secondary !(V–I) Typec

HV
a HI

a (V–I) Sb HV
a HI

a (V–I) Sb

2001 QC298 8.18± 0.03 7.40± 0.04 0.78± 0.05 1±2 8.69± 0.04 7.84± 0.03 0.85± 0.05 1±2 −0.07± 0.07 SD
Teharon 6.48± 0.02 5.66± 0.03 0.82± 0.04 1±2 7.04± 0.03 6.23± 0.04 0.81± 0.05 1±2 0.01± 0.06 CL
2000 QL251 7.63± 0.08 6.78± 0.03 0.85± 0.09 2±5 7.90± 0.07 6.92± 0.09 0.98± 0.12 7±5 −0.13± 0.15 2:1
(120347) 4.39± 0.01 3.52± 0.01 0.87± 0.01 2±1 6.58± 0.02 5.70± 0.04 0.89± 0.04 3±2 −0.02± 0.04 SD
(60458) 7.91± 0.06 7.03± 0.08 0.87± 0.10 2±5 8.50± 0.10 7.50 ± 0.08 1.00± 0.13 8±6 −0.13± 0.16 SD
1998 WW31 7.18± 0.01 6.21± 0.02 0.91± 0.02 6±1 7.48± 0.01 6.78± 0.02 0.76± 0.03 1±1 0.15± 0.04 CL
Typhon 8.02± 0.01 7.06± 0.01 0.96± 0.02 7±1 9.21± 0.01 8.27± 0.01 0.93± 0.02 5±1 0.03± 0.03 CN
2001 XR254 6.82± 0.08 5.78± 0.07 1.04± 0.11 10±5 6.89± 0.10 5.82± 0.07 1.06± 0.12 11±6 −0.02± 0.16 CL
Ceto 6.94± 0.01 5.89± 0.01 1.05± 0.02 10±1 7.50± 0.01 6.51± 0.01 1.01± 0.02 8±1 0.04± 0.03 CN
Logos 7.31± 0.06 6.26± 0.06 1.05± 0.08 10±4 7.64± 0.05 6.55± 0.17 1.09± 0.18 12±8 −0.04± 0.20 CL
(134860) 6.87± 0.04 5.75± 0.05 1.12± 0.07 14±3 7.69± 0.06 6.33± 0.03 1.36± 0.06 28±3 −0.24± 0.09 CL
2004 PB108 7.45± 0.05 6.33± 0.05 1.12± 0.07 14±4 8.56± 0.10 7.40 ± 0.09 1.16± 0.13 16±6 −0.04± 0.15 SD
2003 TJ58 7.92± 0.03 6.79± 0.02 1.13± 0.04 14±2 8.43± 0.04 7.32± 0.03 1.11± 0.05 13±3 0.02± 0.06 CL
(47171) 4.08± 0.01 2.89± 0.01 1.19 ± 0.01 18±1 6.30± 0.02 5.18± 0.02 1.12± 0.03 14±1 0.07± 0.03 3:2
2001 FL185 7.41 ± 0.21d 6.22± 0.10d 1.19 ± 0.23d 18±12 – – – – – CL
2000 CF105 7.84± 0.14 6.63± 0.06 1.21± 0.15 19±7 8.55± 0.15 7.38± 0.06 1.16± 0.16 16±8 0.05± 0.22 CL
1999 OJ4 8.15± 0.09 6.90± 0.08 1.25± 0.11 21±6 8.29± 0.24 6.92± 0.03 1.37± 0.24 28±11 −0.12± 0.26 CL
(82075) 4.85± 0.10d 3.60± 0.15d 1.25± 0.18d 21±9 – – – – – 8:3
(79360) 6.27± 0.04 5.00± 0.01 1.26± 0.04 22±2 6.46± 0.03 5.13± 0.04 1.33± 0.05 26±2 −0.07± 0.06 CL
2003 QW111 7.40± 0.05 8.81± 0.09 1.27± 0.04 23±2 6.11± 0.02 7.50 ± 0.06 1.31± 0.12 25±5 −0.04± 0.12 7:4
(119979) 4.88± 0.07d 3.60± 0.06d 1.28± 0.09d 23±4 – – – – – SD
(123509) 7.51± 0.05 6.22± 0.02 1.30 ± 0.05 24±3 7.56± 0.04 6.32± 0.03 1.24± 0.06 20±3 0.06± 0.08 CL
(148780) 6.98± 0.14 5.69± 0.08 1.30 ± 0.16 24±8 7.43± 0.12 6.05± 0.11 1.39± 0.17 29±8 −0.09± 0.24 CL
2003 QY90 7.61± 0.02 6.29± 0.03 1.34 ± 0.04 25±2 7.65± 0.04 6.41 ± 0.03 1.34 ± 0.06 22±3 0.00± 0.07 CL
(80806) 7.10± 0.09d 5.75± 0.05d 1.34 ± 0.10d 26±5 – – – – – CL
(182933) 6.99± 0.06d 5.64± 0.02d 1.35± 0.06d 27±2 – – – – – SD
1999 RT214 8.13± 0.02d 6.73 ± 0.06d 1.39± 0.06d 30±2 – – – – – CL
(26308) 6.11± 0.03 4.71± 0.02 1.40 ± 0.04 30±2 8.31± 0.05 6.99± 0.01 1.32± 0.05 25±2 0.08± 0.06 2:1
2000 CQ114 7.92± 0.05 6.52± 0.05 1.40 ± 0.08 30±4 8.04± 0.20 6.68 ± 0.07 1.36± 0.21 27±10 0.04± 0.22 CL
2005 EO304 6.57± 0.09 5.14± 0.11 1.43± 0.14 32±6 8.09± 0.13 6.73 ± 0.14 1.36± 0.19 27±8 0.07± 0.24 CL
Borasisi 6.69± 0.01 5.31± 0.01 1.43± 0.03 28±1 7.15± 0.02 5.68 ± 0.01 1.47± 0.03 35±1 −0.04± 0.04 CL
2001 QY297 6.82± 0.22 5.34± 0.10 1.48 ± 0.24 36±12 7.03± 0.28 5.78± 0.15 1.25± 0.31 21±16 0.23± 0.39 CL

a Magnitude geometrically corrected (Appendix A, Eq. (A.4)) to account for heliocentric, geocentric distance, phase angle of observation and phase coefficient.
b Spectral gradient, a measure of the reddening of the reflectance spectrum between two wavelengths, V and I, expressed in percent of reddening per 100 nm.
c CL = Classical, CN = Centaur, SD = Scattered. Derived from the Deep Ecliptic Survey (DES) database, Elliot et al. (2005).
d Combined light values, the components were not uniquely resolved.

Fig. 1. The secondary vs. primary colors for each binary object are plotted. The
dashed line demarks a slope of 1, indicating components of identical color. A Spear-
man rank test shows the primary and secondary colors correlated at the 99.99991%
level (5-sigma for a normal distribution). A Pearson product–moment calculation
yields a similar result.

5.2. Comparison to single TNOs

In Fig. 2 we plot a comparison of the colors of TNB compo-
nents with the colors of assumed single TNOs from the MBOSS

(Hainaut and Delsanti, 2002) and HST (Stephens and Noll, 2007)
color databases. The TNB components appear to span the same
color range as single TNOs. In order to evaluate the significance
of the apparent similarity of binary colors with singles we carried
out a K-S test. Using all of the data shown in Fig. 2 we find a high
probability of correlation, 96% (Fig. 3). However there are possible
biases in the data sample that could be important.

First, it is important to note that some fraction of the ap-
parently single objects are likely to be binaries. For objects not
yet observed by HST, it can be estimated that ∼20% or more
of Cold Classical objects and ∼10% or fewer of the other dy-
namical classes (Noll et al., 2008a) are detectable binaries at
HST WFPC2 resolution. However, a significant fraction of objects
in MBOSS have already been searched for binaries with HST so
the potential for resolvable binaries is limited. The distribution
of binaries as a function of separation (Kern and Elliot, 2006;
Noll et al., 2008a) suggests that a substantial fraction of binaries
may exist, but be unresolvable by HST. Estimating the number of
objects in the apparently single dataset is problematic. In the most
extreme case, all TNOs could be binary. In that case, we would be
comparing color as a function of binary separation.

A more tractable source of potential bias is related to the
known correlation of color with dynamical class (Tegler and Ro-
manishin, 2000; Gulbis et al., 2006). In particular, the Cold Clas-
sical population is known to be systematically redder than other
dynamical classes. Because binaries are more common in the Cold
Classical population, our sample of binaries is skewed with 44%
Cold Classicals compared to 27% for the singles. To try to account
for this bias we randomly selected 10 samples of singles with the
same mixture of Cold Classicals and non-Cold Classicals as in our

KBO binary colors match! 
(Benecchi et al. 2009, 

Nesvorny, Youdin & Richardson 2010)

Comets have tails! 
(Blum et al. 2014)

image: John Laborde



Four Stages of Planet Formation: 
The Core Accretion Model

1. Dust to  
Planetesimals

3. Growth of 
Gas Giant  
Atmospheres

4. Planet 
Migration and 
Scattering

Credits: A. Johansen, F. Sulehria, D. Lin, P. Armitage 

2. From 
Planetesimals 
to Planets & 
Cores

?



Options for growing terrestrial planets and cores

1. Giant impacts
2. Aerodynamically 
assisted “pebble 

accretion”

Ormel & Youdin (unpublished)



Key Issues in Terrestrial 
Planet & Core Growth

1. Timescale 

• Potentially faster for     
aerodynamic pebbles 

2. Availability of Mass 

• Planetesimal accretion stalls at 
“isolation mass”  

• Radial drift overcomes isolation 

Michiel Lambrechts and Anders Johansen: Rapid growth of gas-giant cores by pebble accretion
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Fig. 11. Core growth as function of time, plotted for various or-
bital distances (0.5, 5 and 50 AU). The drift branch, marked by
grey solid lines, assumes an initial core mass of M0 = 10−5M⊕
and ∆ = 0.05. The drift growth continues until the transition
mass Mt is reached (marked by a full grey dot). Accretion con-
tinues through the more efficient Hill branch, drawn in black.
For clarity, we start the Hill growth from the transition mass at
time t = 0 yr, instead of continuing from the time where drift
accretion comes to a halt. The masses of Ceres and Pluto (lo-
cated at respectively 2.7 and 39 AU) are marked on the vertical
axis for reference. The grey dotted curves correspond to clas-
sical planetesimal accretion (PA), where the faster growth cor-
responds to 2D accretion of planetesimal fragments (Rafikov
2004) and the slower to 3D accretion of planetesimals (e.g.
Dodson-Robinson et al. 2009). Note that drift accretion time-
scale at 50 AU takes more than 108 yr and its transition mass
point is not plotted.

feeding zone. Diffusion can be rapid, since the diffusion time
associated with closing the Hill sphere tHΩ ∼ R2

H/(δtH2) ∼
(1/3)2/3δ−1

t µ
2/3, is of order unity for a protoplanetary disc with

δt = 0.01.
Particle drift. When the drag force responsible for radial

drift is too small, particles could get trapped in mean mo-
tion resonances with the core. Weidenschilling & Davis (1985)
studied large, τf ≥ 1, particles in the Stokes drag regime,
and argued that particles smaller than these sizes feel large
enough drag forces to escape resonant trapping around a Jupiter-
mass planet at 5 AU. As shown by Tanaka & Ida (1997) inclu-
sion of mutual planetesimal interactions breaks down the reso-
nances, but dust gap formation still occurs for large planetes-
imals, where gas drag changes the semi-major axis of the the
planetesimals after scattering with the protoplanet. The maxi-
mal particle size unaffected by particle trapping seems approxi-
mately inversely proportional to the planet’s mass, which is also
seen in simulations performed by Paardekooper (2007). In fact,
Weidenschilling & Davis (1985) argue that small pebbles are the
only size that can be accreted by the core, since trapped larger
planetesimals get dynamically excited and will be ground to
fragments, which in their turn are capable of escaping the res-

Core growth to 10 M⊕
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r

PebblesFragments

Planetesimals

Fig. 12. Time needed for core growth up to 10 M⊕ at various lo-
cations in the disc. The solid black line gives the formation time
of the core for pebble accretion in the Hill regime, while grey
lines give the time needed to form the critical 10-Earth-mass
core by planetesimal accretion. The dashed grey line represents
planetesimal fragment accretion from a thin midplane layer, as
studied by Rafikov (2004). The red shaded area shows the ap-
proximate time interval in which the protoplanetary disc loses
its gaseous component and encompasses for example the esti-
mated age of gas giant LkCa 15 A (Kraus & Ireland 2012). Core
formation needs to occur before this time.

onance. This picture is confirmed in simulations performed by
Levison et al. (2010).

Dust gaps can open up before the core is massive enough
to create a gap in the gas disc itself (Paardekooper & Mellema
2006). Muto & Inutsuka (2009) analytically show that the core
has to be over a critical mass,

µc > ∆
(H
r

)−1
≈ 1, (45)

for particles of τf ≤ 1 in order for a dust gap to emerge. Past r ≈
1 AU, µ ≈ 1 is consistently above 10 M⊕, the critical core mass
for gas and ice giants (see Figure 3). Particles thus always drift
radially fast enough to replenish the feeding zone of the core.
Indeed, if the drift rate is set by Rd = 2πr∆vΣp, the requirement
Rd ≥ ṀH recovers the above criterion, Eq. (45). At the same
time, as pointed out by Ormel & Kobayashi (2012), the particle
drift can also be responsible of clearing up the entire reservoir of
available pebbles in the disc.

Terrestrial planet formation. Growth at small orbital dis-
tances, r < 5 AU, is remarkably rapid in the pebble accretion
model. Formation of rocky planets and possibly in situ forma-
tion of gas-giant planets in the terrestrial planet region seems
problem-free from the perspective of the accretion rate. The
growth time-scales for both the drift and Hill accretion branch
shrink to approximately 105 yr at Earth-like separations from
the host star. This could indicate that even terrestrial planet for-
mation occurs rapidly during the gaseous disc phase. However,
closer to the star the amount of material in an annulus of Hill-
radius-width is small and the isolation mass by gap formation is
lower. Also the optimally accreted particle size is large, around
10 cm, and ices are not available.

6. Conclusions
In this paper we have demonstrated that accretion of pebbles
makes rapid formation of gas-giant cores possible. The growth
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Lambrechts & Johansen (2012)
C. W. Ormel and H. H. Klahr: The effect of gas drag on the growth of protoplanets
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Fig. 5. Examples of planet-particle interactions for different values of the dimensionless headwind velocity ζw and coupling parameter St. For
typical nebula parameters particles of St = 10 correspond to loosely coupled m-size particles, whereas St = 0.01 are more strongly coupled
cm-size particles, see Fig. 2. Likewise, ζw = 1 corresponds to protoplanets of Rp ∼ 103 km in radius, while ζw = 100 corresponds to Rp ∼ 10 km
planetesimals. (A) Two particles of St = 10 experience a close encounter within the Hill sphere (dotted circle). The xS = 3.9 particle is captures
and settles to the planet, whereas the other particle is ejected from the Hill sphere (The Keplerian shear eventually causes it to resurface at the
other side of the Hill sphere). (B) Strong gas coupling, St = 0.01. There is a competition between the gravitational pull of the planet and the drag
force directed towards negative y. (C) Close encounters at large ζw without settling (see inset). (D, E) Examples of particle trajectories originating
from interior orbits. (F) Radially approaching orbits. (This figure is available in color in electronic form.)

orbits like the xS = 3.9 curve in Fig. 5a as gas drag induced or-
bital decay, whereas the accretion mode in Fig. 5b is referred to
as settling and draw the dividing line at St = 1.

On the other hand Fig. 5c, which features a larger dimension-
less headwind (meaning: a smaller protoplanet) of ζw = 100,
does not display the settling behavior. Here, particles can only
be accreted due to the finite size of the target. The xS = 0.796
trajectory has a minimum distance of rmin = 5.0 × 10−4; the
xS = 0.8 trajectory rmin = 4.5 × 10−3. Clearly, for a planet size
αp ≪ 1 the impact parameter in Fig. 5c is much less than for
the settling orbits of Fig. 5b. Since the Stokes numbers are the
same, the reason must be due to the larger headwind velocity ζw.
This is understandable since particles of St ≪ 1 approach at the
headwind velocity (va ≈ ζw) and a large va is not conducive for
accretion.

In the lower panels of Fig. 5 we vary either the Stokes num-
ber (particle size) or ζw (protoplanet size) with respect to the
panel above. For a Stokes number of 103, see Fig. 5d, the ef-
fects of gas-drag are even less pronounced and it becomes more
difficult to capture these (big) particles within the Hill sphere.
Moreover, if such a particle would be captured, it takes longer to
finally accrete this particle due to orbital decay. Another differ-
ence with Fig. 5a is that the St = 103 particles can now also enter

the Hill sphere from interior orbits (negative xS). In Fig. 5a the
strong radial drift still prevents particles from entering the Hill
sphere from the negative y-direction; however, for St = 103 the
radial drift is sufficiently reduced to render the situation more
akin to the symmetric gas-free limit.

The ζw = 0.1 orbits in Fig. 5e also feature accretion from
particles approaching the planet from interior orbits, which the
ζw = 1.0 orbits of Fig. 5b were not capable of. The dimen-
sionless headwind parameter of ζw = 0.1 corresponds to a
very big planet (in the canonical model) for which, as we will
discuss below, the constant gas density background is unreal-
istic. Alternatively, it can represent a smaller protoplanet in a
nebula where the dimensional headwind is, for some reason,
strongly reduced. In any case, we see that low ξw tends to make
the interactions more symmetric. This can be seen from the
Eq. (19b): low ζw or large St reduce the contribution from the
non-symmetric headwind term, ζw/(1 + St2).

Figure 5f shows, however, that for St = 10 and ζw = 100
the picture is anything but symmetric. The particles approach
the planet from a very radial direction (x-direction) – at least, as
seen from the perspective of the planet. The point is here that
both St and ζw are large. Thus, both planet and particle move
at a Keplerian velocity (in the azimuthal direction) but, due to
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“isolated.” Setting miso = 2πΣaBRH leads to the isolation mass,

miso =
(2πBΣ)3/2

(3M⋆)1/2
a3 ≈ 0.08

(

B

7

)3/2(FZrel

0.33

)3/2 (M⋆

M⊙

)−1/2
( a

AU

)3/4
M⊕ . (5-12)

With F = 1 and Zrel = 0.33, isolated objects in the terrestrial zone have masses comparable to
Mercury and Mars. The MMSN has room for 30–50 isolated objects between the orbits of Mercury
and Mars. Because their escape velocities are much smaller than their orbital velocities (eq. [5-4]),
isolated protoplanets eventually collide and merge to form Earth-mass planets (Fig. 8).

Outside the snow line, Zrel = 0.78 at 5 AU yields an isolation mass of roughly 1 M⊕. As we
show later, this mass is too small to bind the gas required for a gas giant. Increasing the mass of
the MMSN (F ≈ 5) increases the isolation mass to the ‘typical’ core mass of 10 M⊕ needed for
a massive atmosphere. Thus, the MMSN is fine for the terrestrial planets, but it is not massive
enough to allow formation of gas giants Simialr to Jupiter and Saturn. The extra mass required is
consistent with observations of disks around the youngest stars (§2).

5.1.3. Planetesimal Velocity Evolution

As the previous section makes clear, the evolution of planetesimal velocities establishes the
rate protoplanets accrete smaller planetesimals. Gravitational scattering is more common than
physical collisions; thus, planetesimal velocities rapidly adjust as large protoplanets grow.

Several processes modify the random velocities of planetesimals. The source of random kinetic
energy is known as viscous stirring. This process uses planetesimal encounters — predominantly
gravitational scattering — to extract energy from orbital shear. Dynamical friction redistributes
kinetic energy among planetesimals of different masses, pushing them towards equipartition. Thus,
smaller (larger) planetesimals damp (excite) the random velocities of the larger (smaller) planetesi-
mals (Wetherill & Stewart 1989; Kokubo & Ida 1995; Kenyon & Luu 1998). Ignoring ejections and
gas drag, physical collisions are the only source of kinetic energy damping. Collisional damping
is especially effective for small planetesimals, r ! 1–100 m, that collide frequently (Ohtsuki 1992;
Kenyon & Luu 1998). When collisions produce small fragments that collide even more frequently,
damping is very efficient. Goldreich et al. (2004) discuss order-of-magnitude derivations of these
processes. As with accretion, behaviors vary between the dispersion- and shear-dominated regimes.
It is common to refer to the excitation and damping of planetesimal velocities as “heating” and
“cooling,” respectively.

The main goal of this introduction to velocity evolution is to show that planetesimals cannot
be heated above — and can sometimes be cooled significantly below — the escape velocity of the
large protoplanets. We focus on dispersion-dominated encounters to explain this result, which is
crucial for ensuring the gravitationally focused collisions required to make planets on reasonable
timescales.

We first consider the simple case where all planetesimals have the same size. When v < vesc,
viscous stirring is dominated by gravitational scattering and occurs on the scattering timescale.
This heating timescale is well approximated by the two body relaxation time from stellar dynamics
(Binney & Tremaine 2008). For the nσv estimate of the gravitational scattering rate, we use
eq. (5-5) and compute the cross section σ ∼ b2scatt from the impact parameter for strong gravitational
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Summary

• Planetesimal formation 

• Starts with dust coagulation 

• Ends with gravitational collapse 

• Streaming instability and other particle concentration 
mechanisms bridge the “meter-size barrier” 

• Terrestrial planet and core formation 

• New: an early phase of aerodynamic pebble accretion
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