
PLANET FORMATION BY 
GRAVITATIONAL INSTABILITY ?

Kaitlin Kratter
University of Arizona 

Sagan Summer Workshop, July 2015



PLANET FORMATION BY 
GRAVITATIONAL INSTABILITY ?

Kaitlin Kratter
University of Arizona 

Sagan Summer Workshop, July 2015

in GAS!



THE BOTTOM LINE
• Few disks appear to be massive enough to fragment 

(except perhaps at very early times)

• Those that do are more likely to produce more 
massive objects like brown dwarfs or m-stars

• Inward migration followed by tidal disruption most 
often leads to complete disruption, rather than mass 
reduction. But might assist in solid core formation



THE BOTTOM LINE
• Few disks appear to be massive enough to fragment 

(except perhaps at very early times)

• Those that do are more likely to produce more 
massive objects like brown dwarfs or m-stars

• Inward migration followed by tidal disruption most 
often leads to complete disruption, rather than mass 
reduction. But might assist in solid core formation

accretion disk studies were born in 
galactic / x-ray binary contexts, 

some of the standard assumptions 
made in these contexts are not well 

suited to protostellar / 
protoplanetary disks. 

1. Thermodynamics are dominated 
by stellar irradiation  

2. H/R is not <<1



GLOSSARY
• Self-Gravity: the gravitational attraction of gas to itself is 

competitive with the central body

• Gravitational Instability: (GI) a linear,  hydrodynamic instability 
that can arise in self-gravitating disks of gas, particles or both

• Fragment: a marginally bound gas clump that forms as the non-
linear outcome of GI 

• Planet: depends on whom you ask…



WHAT IS GRAVITATIONAL 
INSTABILITY?

• A hydrodynamic instability 
that arises in rotational;y 
supported disks when self-
gravity wins out over 
pressure support on small 
scales, and stabilization due 
to shear on large scales
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Toomre’s Q, rewritten this way can point us toward important, 
order of magnitude arguments



WHAT IS GRAVITATIONAL 
INSTABILITY?
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Growth begins at Q=1 in the local approximation, for 
axisymmetric modes. since H<<R, Md<<M*
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• A hydrodynamic instability 
that arises in rotational;y 
supported disks when self-
gravity wins out over 
pressure support on small 
scales, and stabilization due 
to shear on large scales



WHAT IS GRAVITATIONAL 
INSTABILITY?

Growth begins at Q>1 in the 
“global” approximation
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Figure 6. Surface density, in terms of the initial surface density, on a loga-
rithmic scale, for a simulation with Nx = Ny = 1024 and β = 5. Top panel:
"t = 100; bottom panel: "t = 400.

However, after "t = 250, something interesting happens. Sud-
denly, the maximum surface density shoots up to values above 100,
indicating fragmentation. The bottom panel of Fig. 6 shows a snap-
shot of the surface density at "t = 400, after the disc has fragmented.
Only a single fragment was formed around "t = 250, in contrast
to simulations with β < βc, which usually show ∼5–10 fragments,
initially, which can subsequently merge.

The reason for this fragmentation at high values of β lies in the
nature of the gravitoturbulent state. Even before true fragmentation
occurs, clumps are formed and destroyed on a continuous basis.
This can be appreciated from the top panel of Fig. 5, where the
peaks in #max indicate a clump being destroyed. The rms density
fluctuation is of order unity, while the maximum surface density
reaches values of #max/#0 = 50 several times. One clump that does
not make it to collapse can be spotted near x = 0.05 and y = −0.45
in the top panel of Fig. 6.

Clumps of size ∼H can survive the tidal shear if their size is
less than the size of their Hill sphere. If we take the surface density
within the clump to be constant for simplicity, we must have that

H < R0

(
π#H 2

3M∗

)1/3

, (93)

where R0 is the radial distance to the central star and M∗ is its mass.
This condition can be recast in terms of the local value of Q:

Q <
1
3
. (94)

In other words, keeping the temperature fixed, we only need an in-
crease in surface density of a factor of 3 over the background Q0 ∼
1 state to form a clump that can resist the shear. Once formed, these
clumps will in general contract on a cooling time-scale (Kratter
& Murray-Clay 2011). Their survival depends mainly on if they
can resist the weak shocks that sweep around in gravitoturbulence.
Since shock heating is very localized, this makes fragmentation a
stochastic process: there will be a large spread in clump survival
times, until the first lucky clump survives long enough for collapse
to proceed. It should be noted that the condition given by equa-
tion (93) is not necessary if the cooling time-scale is comparable to
the dynamical time-scale. If cooling acts on a dynamical time-scale,
there is no time for the clump to shear apart before it collapses.

We have observed fragmentation up to β = 7, more than twice
the critical cooling time-scale found by Gammie (2001). The cor-
responding maximum value of the stress is αmax ≈ 0.03. For larger
values of β, the disc remained in a steady, gravitoturbulent state for
"t < 1000, with values of α that agree well with equation (3).

6.3 Higher resolution

We find that increasing the resolution by a factor of 2 (Nx = Ny =
2048) leads to easier fragmentation at higher values of β. As an
example, we show in Fig. 7 four simulations at β = 9, differing
only in the phase (not magnitude) of the initial noise. Two of the
discs fragment, one at "t ≈ 500 and other at "t ≈ 750. The other
two discs maintain a steady gravitoturbulent state for the full length
of the simulation. This nicely illustrates the stochastic nature of
disc fragmentation at high values of β: only in two out of four
simulations does a clump survive for long enough for collapse to
proceed. It is expected that if the simulations would be continued,

Figure 7. Evolution of the maximum surface density (top panel) and the
measured value of α (bottom panel) for four realizations with Nx = Ny =
2048 and β = 9. The dotted line in the bottom panel indicates the prediction
of equation (3).

C⃝ 2012 The Author, MNRAS 421, 3286–3299
Monthly Notices of the Royal Astronomical Society C⃝ 2012 RAS
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rj) respectively. The coefficients αSPH and βSPH determine the
strength of the two viscosity terms and the term µij is given by

µij =
hvij · rij
r
2
ij + η2

, (12)

where η is a softening term that prevents the denominator in Equa-
tion (12) from ever being zero. It should be clear that Equation (11)
only operates when particles are converging and hence will pre-
vent interpenetration and resolve shocks. However, this form of the
viscosity does not distinguish between converging flows and shear
flows and hence this viscosity can also transport angular momen-
tum and can, therefore, heat the system in the absence of shocks
(Cartwright & Stamatellos 2010).

The viscosity coefficients typically satisfy βSPH = 2αSPH

and commonly used values, in self-gravitating disc simulations, are
αSPH = 0.1 and βSPH = 0.2. One reason for using βSPH =
2αSPH is that it ensures that the first term in Equation (11) domi-
nates when the convergence is slow, while the second term dom-
inates when convergence is rapid. The βSPH term is essentially
necessary so as to handle high Mach-number shocks (Monaghan
1992). Consequently, most studies (Murray 1996; Lodato & Rice
2004) only consider the αSPH term when determining the dissipa-
tion due to artificial viscosity in shear flows. Optimally the αSPH

value should be set so as to minimise artificial dissipation while
still preventing particle interpenetration.

Meru & Bate (2012) point out that the dissipation associated
with the βSPH term is not actually negligible but is about a fac-
tor of 2 smaller than that associated with the αSPH term when
αSPH = 0.1 and βSPH = 0.2. They, therefore, conclude that one
should optimise in terms of both αSPH and βSPH and conclude that
the optimal values are αSPH = 0.1, βSPH = 2. This was largely
based on simulations that maximised the value of βcool - which de-
termines the cooling time - for which fragmentation could occur.
Maximising the cooling time at which fragmentation occurs, sug-
gests that one has minimised the amount of artificial dissipation
and so is an attractive strategy to adopt. However, as we’ll discuss
in more detail later, this may not necessarily be the case and so,
here, we investigate how these values of αSPH and βSPH influence
the fragmentation boundary when using the modified cooling form
proposed by Rice et al. (2012).

2.4 Simulation setup

All of the SPH simulations presented here have the same basic
setup as those presented by Meru & Bate (2012). They have a cen-
tral star with mass M∗ = 1 surrounded by a disc extending from
rin = 0.25 to rout = 25, with a mass ofMdisc = 0.1M∗, an initial
surface density profile of Σ ∝ r−1, and with an initial minimum
Q parameter of Q = 2. We impose a cooling of the form described
by Equation (6), but that is either implemented as in Meru & Bate
(2012) - which we call basic cooling - or in the modified manner
suggested by Rice et al. (2012) - which we call smoothed cooling.
We consider various resolutions, ranging from 250000 particles to
10 million particles. In all our simulations we take αSPH = 0.1,
but consider both βSPH = 0.2 and βSPH = 2.

3 RESULTS

3.1 Convergence using smoothed cooling

In the work of Rice et al. (2012) they considered full simulations
using 250000, 500000, and 2 million particles, but represented a 10

Figure 1. Final state of a full 10 million particle simulation using smoothed
cooling with βcool = 8. At this stage (after 6.5 outer rotation periods)
the disc has settled into a quasi-steady state and there is no evidence of
fragmentation.

Table 1. List of the simulations using smoothed cooling.

Simulation No. of particles βcool Fragment?

1 250000 4 Yes
2 250000 4.5 Yes
3 250000 5 No
4 250000 6 No
5 250000 7 No
6 500000 5 Yes
7 500000 6 Yes
8 500000 7 No
9 500000 8 No
10 2000000 5 Yes
11 2000000 6 Yes
12 2000000 7 No
13 2000000 8 No
14 10000000 8 No

million particle simulation using a simulation with 4 million par-
ticles with a mass of Mdisc = 0.04M∗ and that extended from
rin = 15 to rout = 25. These parameters were chosen so as to
have the same properties, in that region, as a full 10 million particle
simulation. In Rice et al. (2012) the 500000 and 2 million particle
simulations fragmented at between βcool = 6 and βcool = 7 and
appeared to be converging. The pseudo-10 million particle simula-
tion, however, fragmented between βcool = 8 and βcool = 9 and
hence they could not claim convergence.

We have since managed to complete a full 10 million particle
simulation with βcool = 8 which, after 6.5 outer rotation periods,
shows no signs of fragmentation. The state of the simulation at this
time (5120 code units or 815 orbits at r = 1) is shown in Fig. 1.
There is clearly lots of spiral structure, but no evidence of fragmen-
tation. We also include a table with the results from the simulations
of Rice et al. (2012) together with this new result using 10 million
particles.

Figure 2 is an updated version of that presented by Rice et al.
(2012). It shows βcool plotted against particle number. The squares

H /R =0.01

H /R =0.10 H /R =0.2

H /R =0.4These two 
scales are 

governed by a 
different 

dispersion 
relations, thus 

different modes 
grow at different 

values of Q



LOCAL VS GLOBAL GI

Kratter+2010Paardekooper 2012, Rice+2014

Stochastic disc fragmentation 3295

Figure 6. Surface density, in terms of the initial surface density, on a loga-
rithmic scale, for a simulation with Nx = Ny = 1024 and β = 5. Top panel:
"t = 100; bottom panel: "t = 400.

However, after "t = 250, something interesting happens. Sud-
denly, the maximum surface density shoots up to values above 100,
indicating fragmentation. The bottom panel of Fig. 6 shows a snap-
shot of the surface density at "t = 400, after the disc has fragmented.
Only a single fragment was formed around "t = 250, in contrast
to simulations with β < βc, which usually show ∼5–10 fragments,
initially, which can subsequently merge.

The reason for this fragmentation at high values of β lies in the
nature of the gravitoturbulent state. Even before true fragmentation
occurs, clumps are formed and destroyed on a continuous basis.
This can be appreciated from the top panel of Fig. 5, where the
peaks in #max indicate a clump being destroyed. The rms density
fluctuation is of order unity, while the maximum surface density
reaches values of #max/#0 = 50 several times. One clump that does
not make it to collapse can be spotted near x = 0.05 and y = −0.45
in the top panel of Fig. 6.

Clumps of size ∼H can survive the tidal shear if their size is
less than the size of their Hill sphere. If we take the surface density
within the clump to be constant for simplicity, we must have that

H < R0

(
π#H 2

3M∗

)1/3

, (93)

where R0 is the radial distance to the central star and M∗ is its mass.
This condition can be recast in terms of the local value of Q:

Q <
1
3
. (94)

In other words, keeping the temperature fixed, we only need an in-
crease in surface density of a factor of 3 over the background Q0 ∼
1 state to form a clump that can resist the shear. Once formed, these
clumps will in general contract on a cooling time-scale (Kratter
& Murray-Clay 2011). Their survival depends mainly on if they
can resist the weak shocks that sweep around in gravitoturbulence.
Since shock heating is very localized, this makes fragmentation a
stochastic process: there will be a large spread in clump survival
times, until the first lucky clump survives long enough for collapse
to proceed. It should be noted that the condition given by equa-
tion (93) is not necessary if the cooling time-scale is comparable to
the dynamical time-scale. If cooling acts on a dynamical time-scale,
there is no time for the clump to shear apart before it collapses.

We have observed fragmentation up to β = 7, more than twice
the critical cooling time-scale found by Gammie (2001). The cor-
responding maximum value of the stress is αmax ≈ 0.03. For larger
values of β, the disc remained in a steady, gravitoturbulent state for
"t < 1000, with values of α that agree well with equation (3).

6.3 Higher resolution

We find that increasing the resolution by a factor of 2 (Nx = Ny =
2048) leads to easier fragmentation at higher values of β. As an
example, we show in Fig. 7 four simulations at β = 9, differing
only in the phase (not magnitude) of the initial noise. Two of the
discs fragment, one at "t ≈ 500 and other at "t ≈ 750. The other
two discs maintain a steady gravitoturbulent state for the full length
of the simulation. This nicely illustrates the stochastic nature of
disc fragmentation at high values of β: only in two out of four
simulations does a clump survive for long enough for collapse to
proceed. It is expected that if the simulations would be continued,

Figure 7. Evolution of the maximum surface density (top panel) and the
measured value of α (bottom panel) for four realizations with Nx = Ny =
2048 and β = 9. The dotted line in the bottom panel indicates the prediction
of equation (3).

C⃝ 2012 The Author, MNRAS 421, 3286–3299
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rj) respectively. The coefficients αSPH and βSPH determine the
strength of the two viscosity terms and the term µij is given by

µij =
hvij · rij
r
2
ij + η2

, (12)

where η is a softening term that prevents the denominator in Equa-
tion (12) from ever being zero. It should be clear that Equation (11)
only operates when particles are converging and hence will pre-
vent interpenetration and resolve shocks. However, this form of the
viscosity does not distinguish between converging flows and shear
flows and hence this viscosity can also transport angular momen-
tum and can, therefore, heat the system in the absence of shocks
(Cartwright & Stamatellos 2010).

The viscosity coefficients typically satisfy βSPH = 2αSPH

and commonly used values, in self-gravitating disc simulations, are
αSPH = 0.1 and βSPH = 0.2. One reason for using βSPH =
2αSPH is that it ensures that the first term in Equation (11) domi-
nates when the convergence is slow, while the second term dom-
inates when convergence is rapid. The βSPH term is essentially
necessary so as to handle high Mach-number shocks (Monaghan
1992). Consequently, most studies (Murray 1996; Lodato & Rice
2004) only consider the αSPH term when determining the dissipa-
tion due to artificial viscosity in shear flows. Optimally the αSPH

value should be set so as to minimise artificial dissipation while
still preventing particle interpenetration.

Meru & Bate (2012) point out that the dissipation associated
with the βSPH term is not actually negligible but is about a fac-
tor of 2 smaller than that associated with the αSPH term when
αSPH = 0.1 and βSPH = 0.2. They, therefore, conclude that one
should optimise in terms of both αSPH and βSPH and conclude that
the optimal values are αSPH = 0.1, βSPH = 2. This was largely
based on simulations that maximised the value of βcool - which de-
termines the cooling time - for which fragmentation could occur.
Maximising the cooling time at which fragmentation occurs, sug-
gests that one has minimised the amount of artificial dissipation
and so is an attractive strategy to adopt. However, as we’ll discuss
in more detail later, this may not necessarily be the case and so,
here, we investigate how these values of αSPH and βSPH influence
the fragmentation boundary when using the modified cooling form
proposed by Rice et al. (2012).

2.4 Simulation setup

All of the SPH simulations presented here have the same basic
setup as those presented by Meru & Bate (2012). They have a cen-
tral star with mass M∗ = 1 surrounded by a disc extending from
rin = 0.25 to rout = 25, with a mass ofMdisc = 0.1M∗, an initial
surface density profile of Σ ∝ r−1, and with an initial minimum
Q parameter of Q = 2. We impose a cooling of the form described
by Equation (6), but that is either implemented as in Meru & Bate
(2012) - which we call basic cooling - or in the modified manner
suggested by Rice et al. (2012) - which we call smoothed cooling.
We consider various resolutions, ranging from 250000 particles to
10 million particles. In all our simulations we take αSPH = 0.1,
but consider both βSPH = 0.2 and βSPH = 2.

3 RESULTS

3.1 Convergence using smoothed cooling

In the work of Rice et al. (2012) they considered full simulations
using 250000, 500000, and 2 million particles, but represented a 10

Figure 1. Final state of a full 10 million particle simulation using smoothed
cooling with βcool = 8. At this stage (after 6.5 outer rotation periods)
the disc has settled into a quasi-steady state and there is no evidence of
fragmentation.

Table 1. List of the simulations using smoothed cooling.

Simulation No. of particles βcool Fragment?

1 250000 4 Yes
2 250000 4.5 Yes
3 250000 5 No
4 250000 6 No
5 250000 7 No
6 500000 5 Yes
7 500000 6 Yes
8 500000 7 No
9 500000 8 No
10 2000000 5 Yes
11 2000000 6 Yes
12 2000000 7 No
13 2000000 8 No
14 10000000 8 No

million particle simulation using a simulation with 4 million par-
ticles with a mass of Mdisc = 0.04M∗ and that extended from
rin = 15 to rout = 25. These parameters were chosen so as to
have the same properties, in that region, as a full 10 million particle
simulation. In Rice et al. (2012) the 500000 and 2 million particle
simulations fragmented at between βcool = 6 and βcool = 7 and
appeared to be converging. The pseudo-10 million particle simula-
tion, however, fragmented between βcool = 8 and βcool = 9 and
hence they could not claim convergence.

We have since managed to complete a full 10 million particle
simulation with βcool = 8 which, after 6.5 outer rotation periods,
shows no signs of fragmentation. The state of the simulation at this
time (5120 code units or 815 orbits at r = 1) is shown in Fig. 1.
There is clearly lots of spiral structure, but no evidence of fragmen-
tation. We also include a table with the results from the simulations
of Rice et al. (2012) together with this new result using 10 million
particles.

Figure 2 is an updated version of that presented by Rice et al.
(2012). It shows βcool plotted against particle number. The squares
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From GI to Fragmentation

• Fragmentation occurs when the instability does 
not saturate in the linear phase. Saturation typically 
occurs in one of two ways:

• mode-mode coupling 

• thermal feedback 



MODE-MODE COUPLING
• Interaction of multiple growing 

modes saturates the amplitude 
of density perturbations

• surface density may never get 
high enough *locally* for 
collapse, because global modes 
are triggered at higher Q.

• global modes provide very 
efficient angular momentum 
transport — may be 
important where MRI / disk 
winds fail

416 LAUGHLIN, KORCHAGIN, & ADAMS Vol. 477

FIG. 6.ÈGlobal Fourier amplitudes, plotted as a function of timeC
1

ÈC
4

,

occurs at its characteristic level was not forthcoming from
their analysis. In the following sections, we will present a
convincing model for saturation that relies on nonlinear
mode coupling.

4. SELF-INTERACTION OF GLOBAL MODES

4.1. Derivation of the Governing Equation
The previous sections have made it clear that a single

dominant two-armed spiral, with well-described properties,
is intrinsic to our model disk. However, a purely linearly
growing mode can provide only an azimuthal rearrangement
of the gas. It cannot alter the axisymmetric component of
the surface density distribution of the original con–gu-
ration. The linear description of the problem breaks down
as the initial radial pro–le is modi–ed. shows howFigure 7
the azimuthally averaged surface density distribution
changes over time. From T \ 0 to 18, there is little change.
At times later than T \ 18, the pro–le departs from the
initial state. Mass is removed from the region of the surface
density maximum and deposited both inward and outward
to pile up against the inner and outer restraining walls. Our
walls have been taken as an aid to the analysis. In a more
realistic case, the material in the outer regions would be
excreted as an alluvial fan, whereas the material piling up
against the inner edge would be accreted onto the central
star. This behavior was observed by & Roç z5 yczkaLaughlin

in their simulations. In a second simulation that we(1996)
describe below, we remove the zero velocity condition from
the outer disk boundary, thereby illustrating that free pro-

pagation into the surrounding medium has little substan-
tive e†ect on the results.

In order to see how radial mass transport arises from the
growth of a nonaxisymmetric instability, one must consider
the action of second-order terms in the perturbation expan-
sion. In our previous work we examined how the(LK),
nonlinear interaction of two linearly independent modes
with azimuthal mode numbers m \ n and m \ n ] 1 could
provide a resonant nonlinear eccentric (m \ 1) mode. We
identi–ed the rapid growth of one-armed instabilities (and
their attendent displacement of the central star from the
center of mass) with this e†ect. In the case at hand, there is a
single dominant m \ 2 mode. Emergent nonlinear e†ects
will tend to stem from the self-interaction of this dominant
mode and will thus appear in proportion to 2h.o c

2

2 o P cos2
By analogy with the trigonometric identity cos2
2h \ (1 ] cos 4h)/2, we expect the earliest and strongest
nonlinear activity to show up in the m \ 0 and m \ 4 har-
monics. In other words, the disk responds to the rampant
growth of the two-armed spiral by leaking power into the
underlying equilibrium Ñow, as well as into the –rst harmo-
nic of the disturbance.

This state of a†airs will be considered from a more physi-
cal standpoint in Mathematically, the situation can be° 5.
described by considering deformations of the equilibrium
state that include second-order nonlinearity. One does this
by writing the density and the velocities in the disk as the
sum of perturbed and unperturbed components :

p \ p

0

] p

8 , (20)

Laughlin, Korchagin, Adams 1996



THERMAL FEEDBACK: THE 
COOLING TIME CRITERION

• waves/spiral arms generate subsonic shocks, which 
heat the gas. 

• too much heating, Q>1, self-regulated GI is possible

• too little heating, Q<1, fragmentation

⌧c = �⌦�1

since the instability grows on a dynamical time, cooling on a similar 
timescale is too fast to stave off fragmentation. 

⇡ ⌃c2s
�T 4

f(⌧)



HOW FAST? WHAT IS 

• Physically: set by optical depth due to dust.

• It depends on the (effective) EOS (   )

• Probably between 8-15 for protoplanetary disks 
with 

• Numerical modelling required

�

�

� = 7/5



Saturation vs fragmentation
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FIG. 5.ÈMap of surface density in a run with Black is low density and red is high density. The disk has fragmented and formed two boundq
c
\ 2)~1.

objects. These objects eventually collide and coalesce. [See the electronic version of the Journal for a color version of this Ðgure.]

are destroyed. Under these circumstances it seems unlikely
that energy will be transmitted over large scales by waves.

What can the numerical models tell us about the locality
of angular momentum transport in self-gravitating disks? I
have used two methods to assess the locality of structure in
the nonlinear outcome of my models. In the Ðrst analysis, I
calculate the dimensionless autocorrelation function of the
surface density, m :

m(r) \ [1 ] 1
S&T2L2

P
d2x@&(r ] r@)&(r@) . (24)

Coherent wave trains would appear as large-scale corre-
lations in the surface density. Figures 7 and 8 show the
autocorrelation function averaged from a series of Ðve snap-
shots at t \ (20,40,60,80,100))~1. Figure 7 shows the
spatial structure of the correlation function from a run with
L \ 640G&/)2 and N \ 1024. Evidently density corre-
lations are concentrated in a region that is much smaller
than the size of the model. Figure 8 shows cuts through the
correlation function (along the rays marked ““ short axis ÏÏ
and ““ long axis ÏÏ in Fig. 7) that conÐrm this quantitatively.

Also shown in Figure 8 is the autocorrelation function for
a run with L \ 320G&/)2 and N \ 512 (the same spatial

resolution as the larger model). Di†erences between the
smaller and larger model result are small and attributable
to sampling noise. The correlation function thus appears to
depend only weakly on L , at least for L [ 320G&/)2 and

This argues that surface density structure isq
c
\ 10)~1.

locally determined.
In a second analysis, I have calculated which Fourier

components of the surface density dominate the gravita-
tional shear stress. Figure 9 shows the quantity

da
G

dk
\ 2

3S&c
s
2T
P

k d/
nGk

x
k
y
o &

k
o2

2k3 . (25)

Here / is an angular coordinate in Fourier space. This is the
contribution to the gravitational shear stress from Fourier
components of the surface density in the annulus between k
and k ] dk. The result is calculated from a model with
L \ 640G&/)2 and N \ 1024. Fully 90% of the angular
momentum transport comes from wavenumbers with
k [ 5(2n/L ). Thus, wavelengths signiÐcantly smaller than
the model size dominate the shear stress.

Figure 9 can be used to estimate how cool a disk must be
for the local model to be applicable. If the wavenumber k

pkof the maximum in is to satisfy thenda
G
/dk k

pk
r/(2n) > 1,

Gammie, 2001

Most power in “gravito-turbulence”
 occurs on scales 1<H<10

Fragments also occur on 
scales ~H
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FIG. 4.ÈMap of surface density at t \ 50)~1 in the standard run. Black is low density and red is high density. [See the electronic version of the Journal for
a color version of this Ðgure.]

disks. I will then use the outcome of the numerical experi-
ments to show that long-range correlations in surface
density, which might be expected to develop in the presence
of substantial wave transport, are not present.

Consider a density wave in a razor-thin Keplerian disk.
The disk structure varies only on a scale r, and v(r) > 1. The
wave where andP exp (i(/ dr@k

r
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(Shu 1970 ; Goldreich & Tremaine 1979). This is the full
wave energy Ñux. BPÏs ““ anomalous Ñux,ÏÏ by comparison, is
the gravitational component of the energy Ñux measured in
a corotating frame. Shutting o† self-gravity is equivalent to
taking in equation (22). Evidently the wave energyk

cr
] 0

Ñux does not change qualitatively in this limit.
Wave energy Ñuxes may nonetheless be present. If they

are to change disk structure signiÐcantly, however, they

must be of the same order as the turbulent energy Ñux
If I assume that Q D 1,F

E,wave 4 (3/2)a&c
s
2 r). d& D &0,

and and drop factors of order unity, I Ðnd thatk D k
cr

,
[for acoustic waves in ao F

E,wave/FE,turb o D (m/a)[c
s
/(r))]

nonÈself-gravitating disk, is replaced byc
s
/(r)) 1/( o k

r
o r)].

Thus for

m
a Z

c
s

r) , (23)

the wave energy Ñux is as important as the turbulent energy
Ñux.

To proceed further one can only consider the plausibility
of a large-amplitude, high-m wave propagating over signiÐ-
cant distances in the disk. Here are two arguments against
this. First, a density wave can only propagate a distance
Dr/m before it turns into an acoustic wave In a(k

r
c
s
Z )).

Ðnite thickness disk this corresponds to a wavelength
smaller than a scale height. If the disk is stratiÐed, three-
dimensional e†ects will modify the wave (e.g., Ogilvie &
Lubow 1999), and the wave is likely to steepen, shock, and
dissipate. Second, the gravitoturbulent state contains Ñuc-
tuations that emit, scatter, and absorb waves. If scattering
and absorption are strong, as they are here, coherent signals

Kratter+2010a
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Conditions in a massive, protostellar disk around a sun-like star
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Kratter & 
Lodato, in 

prep

accretional heating only including irradiation

�T 4

mid

=
3

8
f(⌧R)Facc

+ �T 4

h,⇤ + �T 4

ex

Facc =
3

8⇡
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Conditions in a massive disk around a sun-like star

corresponding values of Q and cooling time, between 
70-100 AU it is close enough to give rise to GI

H<R
Kratter & 
Lodato,  in 

prep



Conditions for measured Class I disks around sun-like stars
Disks that are low enough in mass to operate in the local 

regime are typically too hot to suffer from GI.

H<<R

Kratter & Lodato, in prep
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HOW DID WE GET HERE?

• The outer regions of protostellar disks are dominated by stellar irradiation, 
which fixes the temperature. 

Disk with Q>1
Q =

cs⌦

⇡G⌃
= f

M⇤
MD

H

r

add mass, raise 
surface density

cool the disk down

only under very special circumstances can the disk reach 
instability by getting colder, rather than by adding mass
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ṀG

c3
s

� =
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Figure 4. Contours of the ratio of planetary isolation mass to stellar mass as
a function of Toomre’s Q and the disk aspect ratio H/r , illustrating that the
isolation mass is always large in unstable disks. For disks with higher Q’s
consistent with core accretion models, the isolation mass remains small. The
shaded region indicates where the isolation mass exceeds the stellar mass.
(A color version of this figure is available in the online journal.)

mass to which a fragment will grow, we can compare it to two
relevant mass scales: the disk isolation mass and the gap-opening
mass.

Halting the growth of planetary mass objects is a relevant
problem independent of the formation mechanism. However,
the GI hypothesis requires that the disk is (or was recently)
sufficiently massive to have Q ∼ 1, implying that the disk is
actively accreting. The core accretion scenario does not face this
restriction.

5.1. Isolation Mass

We estimate an upper mass limit for fragments by assuming
that they accrete all of the matter within several Hill radii:

Miso ≈ 4πfH ΣRH r. (21)

Here, fH ∼ 3.5 is a numerical constant representing from how
many Hill radii, RH = r(Miso/3M∗)1/3, the planet can accrete
(Lissauer 1987).

It is instructive to compare the ratio of the isolation mass to
the stellar mass:

Miso

M∗
= 4.6f

3/2
H Q−3/2

(
H

r

)3/2

. (22)

We find that large isolation masses are always expected in
gravitationally unstable disks. Figure 4 illustrates the scaling
of Equation (22) with Q and the disk aspect ratio, H/r . For our
fiducial temperature profile, H/r ≈ 0.09 at 70 AU. For low
values of Q and comparable H/r , the isolation mass exceeds
10% of the stellar mass. For the ideal disk values cited above
(Equation (16)), the isolation mass is:

Miso ≈ 400MJup

( r

70 AU

)6/5
(

M∗

1.5 M⊙

)1/10

. (23)

This mass is nearly 2 orders of magnitude larger than the
minimum mass. Growth beyond the isolation mass is possible
either through mergers or introduction of fresh material to
accrete by planet migration or disk spreading.

Objects which grow to isolation mass cannot be planets, and
so we turn to mechanisms that truncate fragment growth below
the isolation mass.

5.2. Gap-opening Mass

Massive objects open gaps in their disks when gravitational
torques are sufficiently strong to clear out nearby gas before
viscous torques can replenish the region with new material.
(Lin & Papaloizou 1986; Bryden et al. 1999). The gap width is
set by the balance between the two torques:

∆
r

=
(

fgq
2

3πα

r2

H 2

)1/3

, (24)

where ∆ is the gap width, fg ≈ 0.23 is a geometric factor derived
in Lin & Papaloizou (1993), q is the planet to star mass ratio,
and α is the Shakura & Sunyaev (1973) effective viscosity. This
can be used to derive the standard minimum gap-opening mass
by requiring that ∆ > H :

q >

(
H

r

)5/2
√

3πα

fg

≈ 4 × 10−3
( α

0.1

)1/2
(

T

40 K

)5/4

×
( r

70 AU

)5/4
(

M∗

1.5 M⊙

)−5/4

. (25)

Gap-opening requires ∆ > RH and RH > H . The latter
requirement is automatically satisfied for fragments formed
by GI.

While the effects of GI are often parameterized through an α
viscosity, Balbus & Papaloizou (1999) have pointed out that α,
a purely local quantity, may not adequately describe GI-driven
transport, which is inherently non-local. Lodato & Rice (2005)
have shown that for sufficiently thin disks, the approximation
is reasonable: in order to form objects of planetary mass, the
disk must be relatively thin and at least marginally within this
limit. However, even in this thin-disk limit, it is not clear that GI
driven torques will exactly mimic viscous ones at gap-opening
scales.

Equation (25) implies that the gap-opening mass is less than
or equal to the fragment mass for effective viscosities consistent
with GI. We use α ≈ 0.1, as this is consistent with active GI
(Gammie 2001; Lodato & Rice 2005; Krumholz et al. 2007).
If the local disk viscosity is lower, fragments will always form
above the gap-opening mass.

5.2.1. Gap-opening Starvation Mass

Gap-opening slows accretion onto the planet, but does not
starve it of material completely. Accretion rates through gaps
remain uncertain for standard core accretion models, and numer-
ical models are not available for accretion onto the distended
objects formed through GI fragmentation. Nevertheless, simu-
lations of accretion through gaps in low viscosity disks (Lubow
et al. 1999) demonstrate that accretion is slower through larger
gaps, and this qualitative conclusion likely remains valid as long
as gaps form.

Analogous to the isolation mass, we consider a “gap starvation
mass” that is related to the ratio of the gap width to planet Hill
radius. Rewriting Equation (24), we find that the ratio of gap
width to Hill radius is

∆
RH

=
(

fgq

πα

r2

H 2

)1/3

. (26)

Note that ∆ > RH recovers the canonical gap opening estimate
appropriate for Jupiter: q > 40ν/(r2Ω), modulo order unity
coefficients (cf. Crida et al. 2006).
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mass to which a fragment will grow, we can compare it to two
relevant mass scales: the disk isolation mass and the gap-opening
mass.

Halting the growth of planetary mass objects is a relevant
problem independent of the formation mechanism. However,
the GI hypothesis requires that the disk is (or was recently)
sufficiently massive to have Q ∼ 1, implying that the disk is
actively accreting. The core accretion scenario does not face this
restriction.

5.1. Isolation Mass

We estimate an upper mass limit for fragments by assuming
that they accrete all of the matter within several Hill radii:

Miso ≈ 4πfH ΣRH r. (21)

Here, fH ∼ 3.5 is a numerical constant representing from how
many Hill radii, RH = r(Miso/3M∗)1/3, the planet can accrete
(Lissauer 1987).

It is instructive to compare the ratio of the isolation mass to
the stellar mass:

Miso

M∗
= 4.6f

3/2
H Q−3/2

(
H

r

)3/2

. (22)

We find that large isolation masses are always expected in
gravitationally unstable disks. Figure 4 illustrates the scaling
of Equation (22) with Q and the disk aspect ratio, H/r . For our
fiducial temperature profile, H/r ≈ 0.09 at 70 AU. For low
values of Q and comparable H/r , the isolation mass exceeds
10% of the stellar mass. For the ideal disk values cited above
(Equation (16)), the isolation mass is:

Miso ≈ 400MJup

( r

70 AU

)6/5
(

M∗

1.5 M⊙

)1/10

. (23)

This mass is nearly 2 orders of magnitude larger than the
minimum mass. Growth beyond the isolation mass is possible
either through mergers or introduction of fresh material to
accrete by planet migration or disk spreading.

Objects which grow to isolation mass cannot be planets, and
so we turn to mechanisms that truncate fragment growth below
the isolation mass.

5.2. Gap-opening Mass

Massive objects open gaps in their disks when gravitational
torques are sufficiently strong to clear out nearby gas before
viscous torques can replenish the region with new material.
(Lin & Papaloizou 1986; Bryden et al. 1999). The gap width is
set by the balance between the two torques:

∆
r

=
(

fgq
2

3πα

r2

H 2

)1/3

, (24)

where ∆ is the gap width, fg ≈ 0.23 is a geometric factor derived
in Lin & Papaloizou (1993), q is the planet to star mass ratio,
and α is the Shakura & Sunyaev (1973) effective viscosity. This
can be used to derive the standard minimum gap-opening mass
by requiring that ∆ > H :

q >

(
H

r

)5/2
√

3πα

fg

≈ 4 × 10−3
( α

0.1

)1/2
(

T

40 K

)5/4

×
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)5/4
(

M∗

1.5 M⊙

)−5/4

. (25)

Gap-opening requires ∆ > RH and RH > H . The latter
requirement is automatically satisfied for fragments formed
by GI.

While the effects of GI are often parameterized through an α
viscosity, Balbus & Papaloizou (1999) have pointed out that α,
a purely local quantity, may not adequately describe GI-driven
transport, which is inherently non-local. Lodato & Rice (2005)
have shown that for sufficiently thin disks, the approximation
is reasonable: in order to form objects of planetary mass, the
disk must be relatively thin and at least marginally within this
limit. However, even in this thin-disk limit, it is not clear that GI
driven torques will exactly mimic viscous ones at gap-opening
scales.

Equation (25) implies that the gap-opening mass is less than
or equal to the fragment mass for effective viscosities consistent
with GI. We use α ≈ 0.1, as this is consistent with active GI
(Gammie 2001; Lodato & Rice 2005; Krumholz et al. 2007).
If the local disk viscosity is lower, fragments will always form
above the gap-opening mass.

5.2.1. Gap-opening Starvation Mass

Gap-opening slows accretion onto the planet, but does not
starve it of material completely. Accretion rates through gaps
remain uncertain for standard core accretion models, and numer-
ical models are not available for accretion onto the distended
objects formed through GI fragmentation. Nevertheless, simu-
lations of accretion through gaps in low viscosity disks (Lubow
et al. 1999) demonstrate that accretion is slower through larger
gaps, and this qualitative conclusion likely remains valid as long
as gaps form.

Analogous to the isolation mass, we consider a “gap starvation
mass” that is related to the ratio of the gap width to planet Hill
radius. Rewriting Equation (24), we find that the ratio of gap
width to Hill radius is

∆
RH

=
(

fgq

πα

r2

H 2

)1/3

. (26)

Note that ∆ > RH recovers the canonical gap opening estimate
appropriate for Jupiter: q > 40ν/(r2Ω), modulo order unity
coefficients (cf. Crida et al. 2006).

Mfrag = ��2 � �H2

Kratter et al 2010b
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Ṁin



WHY DO FRAGMENTS GROW 
IN DISKS WITH INFALL?

Rhill
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First order: how massive are fragments?
• Initial mass 
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are not disrupted 
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ON THE NEXT INSTALLMENT….FATE 
OF FRAGMENTS

• Disruption on few dynamical times

• Partial or complete disruption due to inward 
migration

• Direct collapse / continued growth

• GI population synthesis, and other ways to make 
wide orbit planets


