

Metallicity Assessment Quantifying Exoplanet Embryonic Numbers (MetallicA QuEEN)

Benjamin Pope, Univ of Oxford Daniel Thorngren, UC Santa Cruz Josh Lothringer, Univ of Arizona Kim Ward-Duong, ASU Lamar Glover, California State LA Mariah MacDonald, Florida Tech Mike Lund, Vanderbilt Paula Sarkis, Notre Dame University Rebecca Esselstein, USAFA/Univ of Oxford Ryan Garland, Univ of Oxford

Problem

Project Goal

- Understand planet formation, specifically how it applies to the metallicity of the protoplanetary disk
- Objective
 - Demonstrate how varying metallicities and dust to gas ratios affects planet formation model outputs
- Science Questions
 - How does increasing the dust-to-gas ratio affect planet formation?
 - How does metallicity affect planet formation and migration?

Hypothesis and Methods

Hypothesis

 If the metallicity is increased, then planet mass and size will increase

Methodology

- Run the program with nominal parameters, but vary dust-to-gas ratio (D/G) and/or metallicity [Fe/H] levels
 - degeneracy in these two parameters
- Vary metallicity levels while holding other parameters constant
- Compare results of each case

Metallicity Results: How does the planet population change with metallicity?

Metallicity Results: [Fe/H] = -1

Metallicity Results: [Fe/H] = 0

Metallicity Results: [Fe/H] = 1

Controlled Study

Relative Populations

Results and Discussion

- Single planet evolution test cases [Fe/H] = -0.2, 0, 0.2

 - Effects on migration properties in Type I/II
- Trends stepping through metallicity
 [Fe/H]: -1.0 dex to +1.0 dex
 Populations produced and locations

 - Populations produced and locations

 - Gas planets: Scarce at low [Fe/H], migrate in w/increasing [Fe/H]
 Icy planets: More higher mass planets w/increasing [Fe/H]
 Rocky planets: Scarce at low [Fe/H]; at high [Fe/H], more can form into icy planets (ice line placement)
- Metallicity affects the following: (\bullet)
 - migration, relative populations of planets formed, •)
 - opacity/temperature through disk, core/envelope properties...
 - Varying dust-to-gas ratio (1:10, 1:500 vs nominal ~1:100) at constant metallicity produces similar populations to varying [Fe/H]

Additional Ideas

- What does it mean for us to observe in a simulated population that super-Earths correlate with metallicity?
- Higher order effects of dust-to-gas ratio varying through different disk regions
 Observed differences in dust disk size and
 - gas (CO) disk sizes

gas poor/dust rich (1:10), metal rich (Z=0 to 1)

