Metallicity Assessment
Quantifying Exoplanet Embryonic Numbers (MetallicA QuEEN)

Benjamin Pope, Univ of Oxford
Daniel Thorngren, UC Santa Cruz
Josh Lothringer, Univ of Arizona
Kim Ward-Duong, ASU
Lamar Glover, California State LA
Mariah MacDonald, Florida Tech
Mike Lund, Vanderbilt
Paula Sarkis, Notre Dame University
Rebecca Esselstein, USAFA/Univ of Oxford
Ryan Garland, Univ of Oxford
Problem

- **Project Goal**
 - Understand planet formation, specifically how it applies to the metallicity of the protoplanetary disk

- **Objective**
 - Demonstrate how varying metallicities and dust to gas ratios affects planet formation model outputs

- **Science Questions**
 - How does increasing the dust-to-gas ratio affect planet formation?
 - How does metallicity affect planet formation and migration?
Hypothesis and Methods

- **Hypothesis**
 - If the metallicity is increased, then planet mass and size will increase

- **Methodology**
 - Run the program with nominal parameters, but vary dust-to-gas ratio (D/G) and/or metallicity [Fe/H] levels
 - degeneracy in these two parameters
 - Vary metallicity levels while holding other parameters constant
 - Compare results of each case
Metallicity Results: How does the planet population change with metallicity?
Metallicity Results: $[\text{Fe/H}] = -1$
Metallicity Results: $[\text{Fe/H}] = 0$
Metallicity Results: $[\text{Fe/H}] = 1$
Controlled Study
Relative Populations

Metallicity and Planet Percentage

- Gas
- Rocky
- Icy

Percent

[Fe/H]
Results and Discussion

- Single planet evolution test cases
 - $[\text{Fe/H}] = -0.2, 0, 0.2$
 - Effects on migration properties in Type I/II

- Trends stepping through metallicity
 - $[\text{Fe/H}]: -1.0 \text{ dex to } +1.0 \text{ dex}$
 - Populations produced and locations
 - Gas planets: Scarce at low $[\text{Fe/H}]$, migrate in w/increasing $[\text{Fe/H}]$
 - Icy planets: More higher mass planets w/increasing $[\text{Fe/H}]$
 - Rocky planets: Scarce at low $[\text{Fe/H}]$; at high $[\text{Fe/H}]$, more can form into icy planets (ice line placement)

- Metallicity affects the following:
 - migration, relative populations of planets formed, opacity/temperature through disk, core/envelope properties...
 - Varying dust-to-gas ratio (1:10, 1:500 vs nominal ~1:100) at constant metallicity produces similar populations to varying $[\text{Fe/H}]$
Additional Ideas

- What does it mean for us to observe in a simulated population that super-Earths correlate with metallicity?

- Higher order effects of dust-to-gas ratio varying through different disk regions
 - Observed differences in dust disk size and gas (CO) disk sizes
gas poor/dust rich (1:10), metal poor (Z=-1 to 1)

gas rich/dust poor (1:500), metal poor (Z=-1 to 1)

gas poor/dust rich (1:10), metal rich (Z=0 to 1)

gas rich/dust poor (1:500), metal rich (Z=0 to 1)