Understanding Planet Formation: Initial Disk Distribution

Kat Feng1
Cassandra Hall2
Anusha Kalyaan3
Marialis Rosario-Franco4
Debanjan Sengupta5
Evan Sinukoff6
Alex Wise5
Angie Wolfgang1,7

1University of California Santa Cruz, 2University of Edinburgh, 3Arizona State University, 4University of Texas at Arlington, 5University of Delaware, 6University of Hawaii Manoa, 7Pennsylvania State University
Effects of Disk Density Profile on Planet Orbital Distribution

Disparity due to disk structure?

https://www.nasa.gov/
(Lissauer et al. 2011)
What do we expect?

Steeper Density Slope

Increase in # of Closer Planets

How do we check?

Vary Density Slope

\[\sum_g \propto f_g r^{p_g} \exp[-r^{2+p_g}] \]

<table>
<thead>
<tr>
<th>Power Law Index</th>
<th>Migration On</th>
<th>Migration Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.5</td>
<td>1.2e-231</td>
<td>1.4e-232</td>
</tr>
<tr>
<td>-1.0</td>
<td>1.4e-178</td>
<td>1.4e-232</td>
</tr>
<tr>
<td>-1.5</td>
<td>6.6e-156</td>
<td>1.4e-232</td>
</tr>
<tr>
<td>-2.0</td>
<td>1.1e-171</td>
<td>1.4e-232</td>
</tr>
<tr>
<td>-2.5</td>
<td>7.0e-182</td>
<td>1.4e-232</td>
</tr>
</tbody>
</table>
Simulations show...

DENSITY SLOPE ITERATION
WITH NO MIGRATION

DENSITY SLOPE ITERATION
WITH LIMITED MIGRATION
Simulations show...

DENSITY SLOPE ITERATION WITH NO MIGRATION

DENSITY SLOPE ITERATION WITH LIMITED MIGRATION
Comparing with Observations...

DENSITY SLOPE ITERATION WITH NO MIGRATION

DENSITY SLOPE ITERATION WITH LIMITED MIGRATION
Method-Specific Comparisons:

![Graph showing Kepler Planets](image1)

![Graph showing Radial-Velocity Planets](image2)

\[
surface\ density = C \ r^{-1.5}; \text{ limited migration on}\]

July 31, 2015

Sagan Summer Workshop 2015
What do we expect?

Larger Scaling Factor (Total Disk Mass)

More large, close-in planets

How do we check?

Vary Normalization Constant

\[\Sigma_g \propto f_g r^{p_g} \exp[-r^2 + p_g] \]

<table>
<thead>
<tr>
<th>Scaling Factor (f_g)</th>
<th>Migration On</th>
<th>Migration Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>3.4e-158</td>
<td>9.7e-236</td>
</tr>
<tr>
<td>5.0</td>
<td>1.8e-306</td>
<td>9.7e-236</td>
</tr>
<tr>
<td>10.0</td>
<td>0.0</td>
<td>9.7e-236</td>
</tr>
</tbody>
</table>

* \(p_g = 1.5 \)
Simulations show...

DISK MASS ITERATION WITH NO MIGRATION

DISK MASS ITERATION WITH (FULL) MIGRATION
Simulations show…

DISK MASS ITERATION WITH NO MIGRATION **DISK MASS ITERATION WITH (FULL) MIGRATION**
Comparing with observations…

Disk Mass Iteration with No Migration

Disk Mass Iteration with (Full) Migration

[Graphs showing the comparison between migration off and migration on.]
Method-Specific Comparisons:

Kepler Planets

Radial-Velocity Planets

MMSN disk; migration on full
Conclusions

Interesting way to see how the different physical processes interact with each other . . .

Some trends:
- Steeper disk slope -> more close-in planets
- Steeper disk slope -> more small planets
- Higher disk mass, no migration -> fewer small planets
- Higher disk mass, with migration -> lack of Jupiters

None of these match observations very well, especially super-Earth population . . . so lots of work for all of us to do!!
Acknowledgements

Worked based on GlobalPFE, a population synthesis code by Christoph Mordasini

Thanks to everyone else who helped make the group projects possible!