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1. Introduction

At the 2015 Sagan Summer Workshop you will have the opportunity to experiment

with a toy population synthesis model called GlobalPFE which stands for Global Planet

Formation and Evolution model. It is based on the original Ida and Lin (2004) model, but

it also includes elements of several other models like Alibert et al. (2005); Mordasini et al.

(2009a); Dittkrist et al. (2014). Recent reviews of population synthesis methods are found

in Benz et al. (2014) and Mordasini et al. (2015).

The basic idea behind the planetary population synthesis method (Figure 1) is that the

observed diversity of extrasolar planets is due to a diversity in the initial conditions, i.e. the

protoplanetary disks. While it is typically difficult to observe the process of planet formation

directly, in a numerical model the link between the planets and the initial conditions can be

established with so-called global planet formation models. They directly predict the final

(potentially observable) properties of synthetic extrasolar planets based on the properties of

their parent synthetic protoplanetary disk. These global models build on simplified results

from detailed modeling of the key processes of planet formation, like accretion and migration.

Thanks to them, the population-wide, statistical consequences of a physical model (e.g.,

for orbital migration) become clear and can be statistically compared with the observed

population (e.g., the semi-major axis distribution). This means that first, theoretical models

of a specific process can be put to the observational test (which is otherwise often difficult),

and second that the full wealth of observational data (the entire statistical information

coming from different observational techniques like radial velocities, transits, direct imaging,

microlensing, ...) can be used to constrain theoretical planet formation models.
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evolutionary model of Mordasini et al. (2012c) is, however,
still significantly simplified in several aspects as discussed in
subsection ‘Atmosphere of the planet’ In view of future
observations yielding very precise radii (e.g. by the photo-
metric CHaracterizing ExOPlanet Satellite CHEOPS, Broeg
et al. 2013) it will probably be necessary to find more accurate
physical descriptions also in global models.
The mass–radius diagram represents, in a prototypical way,

the transition of the focus from pure exoplanet detection to
beginning exoplanet characterization in the past few years.
Besides the M–R relationship, there was recent observational
progress towards characterization in two other domains.

Direct imaging

The first technique besides transits that has recently yielded
important new results for planet characterization is the direct
imaging technique. The method is technically challenging due
to the small angular separation of a very faint source (the
planet) from a much brighter one (the host star). The number
of planets detected by direct imaging is currently still low. But
already these discoveries, like the planets around HR 8799
(Marois et al. 2008) or β Pictoris (Lagrange et al. 2010) have
triggered numerous theoretical studies regarding their forma-
tion (e.g. Dodson-Robinson et al. 2009; Kratter et al. 2010).
Two points about these planets are interesting: their large semi-
major axis and the fact that we directly measure the intrinsic
luminosity at young ages in several infrared (IR) bands. Both
quantities are important to understand the formation mech-
anism (core accretion or gravitational instability) and in
particular the physics of the accretion shock occurring when

the accreting gas hits the planet’s surface during formation (e.g.
Commerçon et al. 2011). If the gravitational potential energy
of the accreting gas is radiated away, low entropy gas is
incorporated into the planet, leading to a faint luminosity and
small radius (so-called ‘cold start’, Marley et al. 2007) while the
accretion of high entropy material leads to a ‘hot start’ with a
high luminosity and large radius (e.g. Burrows et al. 1997;
Baraffe et al. 2003). Recently, Spiegel & Burrows (2012) have
shown that the different scenarios result in observable
difference in the magnitudes of the young planets. The global
model mainly discussed in this work (see Fig. 3) calculates the
luminosity during both the formation and evolution phase with
a self-consistent coupling. For young giant planets, this is a
significant difference compared to purely evolutionary models,
since this coupling is necessary to know the entropy in the
envelope directly after formation and to correctly predict
the luminosity at young ages. Since multi-band photometry
can be used to estimate the metal enrichment of a planet and
because new direct imaging instruments are currently becom-
ing operational (SPHERE and GPI), it is important that future
global models will include better descriptions of the gas
accretion shock and better atmospheric models (cf. subsection
‘Atmosphere of the planet’).

Spectroscopy

Second, one of the most important aspects of the recent
observational progress towards characterization are the
spectra of a number of exoplanets transiting bright stars (e.g.
Richardson et al. 2007). The atmosphere represents a window
into the composition of a planet and contains a multitude of

Fig. 3. Schematic representation of the workflow in the population synthesis method (Ida & Lin 2004a; Mordasini et al. 2009a). The 11
computational sub-models of the combined global planet formation and evolution model are based on the core accretion paradigm (see Alibert
et al. 2005a, 2013, Mordasini et al. 2012b, c).
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Fig. 1.— Elements and work flow of a planetary population synthesis framework.

The planet formation model considered here is based on the core accretion paradigm

(Pollack et al. 1996) which states that giant planets form in a two-step process. First a

critical solid core is built, which then triggers the accretion of the gaseous envelope. This

happens in an evolving disk of gas and solids in which also other protoplanets grow, lead-

ing to dynamical interactions. The disk and the protoplanet exchange angular momentum,

leading to orbital migration. Therefore, a global planet formation model must consider this

minimal set of physical processes:

1. Structure and evolution of the protoplanetary disk

2. Accretion of solids / growth of the planetary solid core

3. Accretion of H/He / growth of the planetary gaseous envelope

4. Orbital migration

5. N-body interaction among (proto)planets

In this toy model we neglect the interactions of the concurrently growing protoplanets,

but we model the other four processes by integrating numerically the temporal evolution of

the planetary core mass, envelope mass, and semi-major axis, and we follow the evolution of

the protoplanetary disk. The physical models used to describe these processes are described

in the following sections.
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2. Protoplanetary disk model

The disk model describes the evolution of the surface density of gas and solids. It also

gives the temperature and vertical scale height. For the temperature T as a function of the

distance r from the star, we simply assume as Ida and Lin (2004), a power law with

T (r) = 280K
( r

1AU

)pT (M?

M�

)
(1)

where M? is the mass of the star, and pT = −1/2 for a passively irradiated disk. This

simple presciption neglects the effect of viscous heating and does not include any temporal

evolution, which is certainly an important limitation. The power law exponent can be set

in the paramsPFE.in file (nominal value -1/2). It affects for example the Type I migration

rate for some prescriptions, or the value of the vertical scale height and thus the mass when

planets pass from Type I to Type II migration. The temperature is used to calculate the

sound speed as

cs(r) =

√
kBT (r)

µmH

(2)

where kB is the Boltzmann constant, µ = 2.4 the mean molecular mass, and mH is the mass

of a hydrogen atom. The vertical scale height is

H = cs/Ω (3)

where the Keplerian orbital frequency is

Ω =

√
GM?

r3
. (4)

The gas surface density is assumed to consist of a sharp dropoff close to the star due

to the magnetospheric cavity, a power-law in the main part, and an exponential decrease

outside of a characteristic radius. This is inspired by the results of Lynden-Bell and Pringle

(1974a) regarding the structure close to the star, and Andrews et al. (2010) for the outer

part. The initial gas surface density is

Σg(t = 0, r) = Σg,0fg

( r

1AU

)pg,0
exp

[
−
(

r

Rout

)2+pg,0
](

1−
√

r

Rin

)
(5)

where Σg,0 = 2400 g/cm2 is the surface density in the MMSN (minimum-mass solar nebula

model), fg the scaling factor of the gas surface density (and thus initial disk gas mass), Rout

the outer disk radius, Rin in inner radius, and pg,0 the power law exponent. The quantities
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fg, Rout and Rin are all initial conditions and Monte Carlo random variables in a population

synthesis. The power law exponent is assumed to be pg = −pT − 3/2 a relation that holds

for strictly speaking only for viscously heated disk (thus this is not self-consistent). In the

nominal case, we thus have Σg ∝ r−1, which is similar to observations (Andrews et al. 2010).

In the code it is however also possible to give pg and pT independently.

The initial surface density of solids is calculated as in Mordasini et al. (2009a) as

Σd(t = 0, r) = fD/G,�10[Fe/H]ηiceΣg(t = 0, r) (6)

where fD/G,� = 0.0149 is the dust-to-gas ratio (≈heavy element fraction) in the Sun

(the value can be changed in the parameter file), [Fe/H] the metallicity (which is again a

Monte Carlo variable) and ηice reflects the increase of the surface density at the iceline. It

is equal to 0.25 inside of the ice line, and 1 outside. The iceline corresponds to the distance

where the temperature falls below 170 K.

2.1. Temporal evolution

In principle, the evolution of the gas disk should be calculated by solving the equation

describing a viscous accretion disk including photoevaporation (e.g. Mordasini et al. 2015).

In the simple GlobalPFE model we rather follow Ida and Lin (2004) and calculate

Σ̇g(r) = −Σg(r)

τdisk
+ Σ̇wind (7)

The first term on the right side would lead to an exponential self-similar decay (due to

viscous accretion onto the star), while the second one mimics the effects of photoevaporation

leading to a shrinking of the disk. The characteristic disk timescale τdisk is another initial

condition and Monte Carlo variable. Σ̇wind is assumed to be 10−7M�/yr / (100 AU)2 as a

rough estimate. The evolution of the gas disk does not include the effect of the accretion

onto the planet. In this sense, we do not conserve mass.

The surface density of solids decreases within the planet feeding zone according to the

amount of mass that the planet accretes, assuming that the surface density is uniform within

the feeding zone (Thommes et al. 2003), i.e.

Σ̇d = − (3M∗)
1/3

6πa2pBLM
1/3
p

Ṁc (8)
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where BL is the width of the feeding zone in Hill spheres, Mp the planet mass, ap its orbital

semi-major axis, and Ṁc the planet solid core accretion rate. Other effects that could modify

the surface density of planetesimals, like drift, are neglected. Figure 2 shows the initial solid

surface density for a 5 times MMSN disk (black line) and how a protoplanet growing in situ

at about 7 AU “eats” into the disk by accreting planetesimals.
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Fig. 2.— Solid surface density as a function of semi-major axis and time. The black line is

the initial condition (nearly) while the red lines are later moments in time. The inner radius

is 0.03 AU, the outer 30 AU.

The full width of the feeding zone is taken to be 12 Hill sphere radii where the Hill

sphere radius is

RH =

(
Mp

3M?

)1/3

ap (9)

with total mass of the planet Mp as the sum of Mc the mass of the core and Me the mass of

the H/He envelope.

3. Accretion of planetesimals

The growth of the solid core with mass Mc is assumed to occur in the classical picture via

the accretion of small background planetesimals. We use the same equation as Ida and Lin

(2004), describing the accretion rate in the oligarchic growth regime. The random velocities

of the planetesimals are raised by viscous stirring by the protoplanet, while they are damped



– 6 –

by gas drag (when the gas disk is still present). The accretion timescale in this regime is

τc,gas = 1.2× 105 yr

(
Σd

10 g cm−2

)−1 ( ap
1 AU

)1/2(Mc

M⊕

)1/3(
M?

M�

)−1/6

×[(
Σg

2400 g cm−2

)−2/5 ( ap
1 AU

)2/20( m

1018 g

)2/15
]

(10)

In this equation, Σd is the mean surface density of planetesimals in the planet feeding zone,

while Σg is the gas surface density at the planet’s position, m is the mass of the planetesimals,

which is fixed to 1018 g, and M⊕ is the Earth mass. In the absence of orbital migration, solid

cores can only grow to the isolation mass. This limit is set automatically in the code, since

we calculate the corresponding decrease of the planetesimal surface density.

Once the gas disk has dissipated, the feeding zone increases as the protoplanet starts

to increase its eccentricity. This allows solid planets to grow at a late time, but at a lower

rate. The accretion timescale after the gas disk has dissipated is given as

τc,nogas = 2 × 107 yr

(
Σd

10 g cm−2

)−1 ( ap
1 AU

)3/2(Mc

M⊕

)1/3(
M?

M�

)−1/2(
ρp

1 g cm−3

)2/3

.

(11)

where we fix the planetary mean density in the simulation to 1 g/cm3.

Both before and after the gas disk has dissipated, the core accretion rate is given as

Ṁc =
Mc

τc
. (12)

The core accretion rate can be scaled with the CMdotc parameter in the paramsPFE.in file

to simulate the effects of a more rapid or slower accretion. When the planet has accreted

also gas, Mc is replaced by Mp, the total mass.

Figure 3 shows the result in a MMSN disk of numerically integrating Equation 12 using

both Equation 10 and Equation 11. The growth is faster at smaller distances (growth wave

propagating outward) as the collisional growth scales with the orbital frequency, but also it

stops earlier, as the feeding zone and thus isolation mass is smaller close-in.

4. Accretion of gas

The accretion of nebular H/He onto the growing planet is modeled in a similar way as

in Ida and Lin (2004), by considering the gas accretion timescale, and several criteria to

terminate the growth.
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Fig. 3.— Core mass as a function of semi-major axis at 0.1 Myr (red), 1 Myr (green) and

10 Myr.

Gas accretion is assumed to start once the core mass exceeds the critical core mass that

is calculated as

Mc,crit = 10M⊕

(
Ṁc

10−6M⊕ yr−1

)1/4(
κ

1 g cm−2

)1/4

. (13)

where κ is the characteristic opacity in the protoplanetary atmosphere.

Then, the gas accretion rate is governed by the Kelvin-Helmholtz cooling timescale of

the envelope, which is calculated as

τKH = 10pKH yr

(
Mp

M⊕

)qKH
(

κ

1 g cm−2

)
(14)

where pKH and qKH are parameters that are obtained by comparing the τKH with internal

structure calculations (Alibert et al. 2005). We use as nominal parameters the ones deter-

mined in Mordasini et al. (2014), pKH = 10.4 and qKH = −1.5, and κ = 10−2 g/cm2. These

values (pKH, qKH, and κ) can be specified in the paramsPFE.in file. Gas accretion can be

switched off by setting κ equal to a very large value (e.g. 1050 g/cm2).

The gas accretion rate due to the contraction of the envelope is finally

Ṁe,KH =
Mp

τKH

. (15)
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This gas accretion rate can be limited by several external effects. We assume that Ṁe is

limited by both the Bondi accretion rate (see Mordasini et al. 2012)

Ṁe,Bondi ≈
Σg

H

(
RH

3

)3

Ω (16)

and a fraction flub99 of the viscous flux in the disk

Ṁe,visc = 3πνΣg (17)

where the viscosity is calculated as Shakura and Sunyaev (1973)

ν = αH2Ω (18)

and flub99 is set to 0.9 (Lubow et al. 1999) meaning that the planet accretes 90% of the gas

flow in the disk. The value of α can also be specified in the paramPFE.in file.
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Fig. 4.— Envelope mass as a function of core mass at 10 Myrs for κ = 10−3 (blue), 10−2

(red, nominal population, see below), and 1 (green) cm2/g as found in population syntheses.

Figure 4 shows the envelope mass as a function of core mass for three different popu-

lations differing by κ. For lower κ, the higher Me for a given core mass, as expected. At

low masses, the envelope mass scales as M−qKH+1
c (i.e. M2.5

c in the simulation here, indi-

cated by the black line, see Mordasini et al. 2014). Then, at a core mass of about 10 M⊕

(for the nominal case), gas accretion becomes efficient, and there are fewer planets in the

intermediate mass range between about 10 to 100 M⊕. This is because the timescale to

accrete this gas mass is clearly shorter than the disk lifetime, so that it is unlikely that the
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disk disappears exactly at an intermediate moment/mass. This is the origin of the so called

“planetary desert” (Ida and Lin 2004), which is typical for the core accretion mechanism. It

is weaker in the model here due to the larger qKH = −1.5 instead of -3., meaning that the

gas accretion rate does not as rapidly increase with mass, and due to the limits given by the

Bondi and viscous accretion rate. At low opacity, giant planets already form for core masses

as low as about 2 M⊕, while at the high, ISM like opacity, almost no giant planets form,

because gas accretion takes too long compared to the disk lifetimes.

4.1. Truncation of gas accretion

We also need to specify at which mass the gas accretion is truncated. Five different

possibilities are implemented:

1. Truncation at the gas isolation mass, assuming a feeding zone width for gas of 2 Hill

spheres. The gas accretion rate is thus set to zero if the planet’s envelope mass is

higher than

Miso,e =

√
(4π2a2pΣg)3

3M?

. (19)

2. Truncation at the gap opening mass, assuming that gas accretion stops once the Hill

sphere is larger than the disk’s vertical scale height RH > H.

3. As in the last criterion, but if RH is larger than 1.5 H, allowing for more massive

planets.

4. No limitation, except when the planet has grown to a stellar mass (∼ 0.1M�)

5. A reduction (but not total truncation) of the gas accretion rate after gap formation,

using the expression of Veras and Armitage (2004). The reduction factor of the gas

accretion rate relative to the flux in the disk is given as

fva04 = 1.668

(
Mp

MJup

)1/3

exp

(
− Mp

1.5MJup

)
+ 0.04 (20)

and the gas accretion rate is

Ṁe,va04 = fva043πνΣg. (21)

The last setting is the nominal case, but the criterion can be changed in the paramsPFE.in

with the ilimMe parameter.
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5. Orbital migration

The gravitational interaction of the gaseous disk and the embedded protoplanet results

in the exchange of angular momentum, which means that the planets change their semi-

major axis due to migration (Goldreich and Tremaine 1979). Other effects (planetesimal

driven migration, Kozai migration, planet-planet scattering) that can also modify the orbits

are currently not implemented in the code.

The model includes both type I and type II migration. For both regimes, several pre-

scriptions are implemented.

5.1. Type I migration

Type I migration is assumed to occur if the planet’s Hill sphere radius is smaller than

the disk’s vertical scale height, i.e. for low-mass planets. The main ingredient for type I

migration is the torque. To calculate the torque we need, among other quantities, the local

power law exponent of the disk temperature pT which is an input parameter of the model,

and the local power law exponent of the gas surface density pg. This quantity is calculated

numerically in the code. Three options for type I migration are implemented in the model:

1. Type I migration rate from Ida and Lin (2008). The migration timescale is given as

τtypeI =
1

2.728 + 1.082pg

(
cs
apΩ

)2
M∗

Mp

M∗

a2pΣg

Ω−1 (22)

and the migration rate is

ȧp = − ap
τtypeI

(23)

2. Torque in a locally isothermal disk (Paardekooper et al. 2010). These authors found

that the total torque in a locally isothermal regime, where the temperature T is con-

stant in time but not with semi-major axis, is proportional to

Γloc = −0.85 + 0.9pT + pg. (24)

3. Torque in an adiabatic disk (Paardekooper et al. 2010). The Lindblad torque in an

adiabatic disk is proportional to

ΓLind =
1

γ
(−2.5 + 1.7pT − 0.1pg) (25)
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while the corotation torque in the adiabatic case is proportional to

ΓCorot =
1

γ
(1.65 + pg(9− 7.9/γ)− 7.9pT/γ) (26)

where γ is the ratio of the heat capacities, fixed to 1.4 in the code (molecular hydrogen).

The total torque due to the combination of the Lindblad and corotation torque finally

is proportional to

Γadia = ΓLind + ΓCorot (27)

For the latter two cases, the final migration rate is then given as

ȧp = Γ 2apΩ
a2p
h2

Σg
Mp

M2
∗

(28)

where h = H/ap is the disk aspect ratio, and Γ is either Γloc or Γadia.

These migration rates can be scaled with the C1 parameter, and the description can be

chosen with the itypeI parameter (1, 2, or 3) in the paramsPFE.in file. Type I migration

can be switched off by setting C1=0.

5.2. Type II migration

Two options for type II migration are implemented in the model:

1. the type II migration rate as in Ida and Lin (2004) given as

ȧp = 3 sign(ap −Rm)α
Σg,mR

2
m

Mp

Ωm

Ω

(
Hm

ap

)2

Ωm (29)

where quantities with the subscript m are evaluated at the radius of velocity rever-

sal, i.e. where the disk changes from accreting to decreting (Lynden-Bell and Pringle

1974b)).

2. the type II migration rate as in Alibert et al. (2005), given as

ȧp = sign(ap −Rm) ur min

(
1,

2Σga
2
p

Mp

)
(30)

where ur = 3ν/(2ap) is the radial velocity of the accreting gas with ν = αH2Ω, the

turbulent viscosity.
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The position of Rm is in both cases calculated as in Ida and Lin (2004)

Rm = 10 AU exp

(
2t

5τdisk

)
. (31)

These migration rates can be scaled with the C2 parameter, and the description can be

chosen with the itypeII parameter (1 or 2) in the paramsPFE.in file. Type II migration can

be switched off by setting C2=0. The initial semi-major axis ap,init of the embryo is another

initial condition/Monte Carlo variable in the globalPFE.in file

Figure 5 shows the effect of (strongly reduced) type I and II migration in the nominal

population. The plot shows that seeds with an initial orbital radius of about 1 AU can

migrate very close to the star, while those starting at 10 AU can migrate to about 2 AU.
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Fig. 5.— Relation of the initial embryo starting position and the final position of the planet

in the nominal population. The colors give the planetary mass.
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6. Probability distributions

The second crucial ingredients for a population synthesis model are sets of initial con-

ditions (see Figure 1). These sets of initial conditions are drawn in a Monte Carlo way from

probability distributions. These probability distributions represent the varying properties

of protoplanetary discs and are derived as closely as possible from results of disc observa-

tions. Currently there are seven Monte Carlo variables, corresponding to the seven initial

conditions in the globalPFE.in input file. They are:

1. The stellar mass

2. The inner disk radius (radius of the magnetospheric cavity)

3. The outer disk radius (start of exponential decrease)

4. The metallicity [Fe/H]

5. The disk gas mass scaling factor fg

6. The disk lifetime decay time

7. The initial starting position of the embryos

The way the generated distributions look like can be checked by looking at the ref red1e5.dat

file which contains the seven initial conditions and the values of the (nearly) initial disk gas

and disk solid mass. As an illustration, Figure 6 shows scatter plots of the initial conditions

for the nominal population.

The stellar mass is uniform in log(M∗) between 0.7 and 1.3 M� as in Ida and Lin

(2004). The disk scaling factor fg is lognormal distribution with a mean µ of log(fg)=0.25

dex, a dispersion σ of 0.5 dex, and a minimal fg=0.01 and a maximum of fg=10 (to avoid

too massive, self-gravitationally unstable disks). [Fe/H] has a normal distribution with

µ = −0.02 and σ=0.22, as observed in solar like stars in the solar neighborhood (Mordasini

et al. 2009b). Finally, the inner disk radius has a linear and uniform distribution between

0.01 and 0.03 AU, to mimic the effect of variable sizes of the magnetospheric cavity due to

the observed spread of magnetic fields in T Tauri stars.

An important note: currently it is assumed that all distributions are independent from

each other. It appears that in particular the disk mass or equivalently fg scales with the

stellar mass. It is simple to modify the code so that the mean value of the disk mass

distribution scales with the stellar mass (e.g., approximately linearly, see Alibert et al. 2011).
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Fig. 6.— Distribution of some of the initial conditions in the nominal population.

7. Limitations

As a toy model, GlobalPFE has many limitations. The most important are:

• One embryo per disk: no dynamics, no competition for gas and solids, no eccentricity

excitation, no capture in mean motion resonances ...

• Gas disk driven migration only (no scattering, no Kozai, no planetesimal driven mi-

gration)

• Core growth by accretion of planetesimals only, no pebble accretion

• Simplistic disk model (fixed temperature profile, no viscous evolution, no real photoe-

vaporation model)

• Simplistic gas accretion model (no calculation of the envelope structure)

• No evolution of the disk of solid: no dust/planetesimal drift, growth, fragmentation,

no eccentricity/inclination evolution

• No planetary internal structure and evolution: the planetary radius and luminosity are

not calculated. The effect of atmospheric escape/envelope evaporation is also neglected.



– 15 –

REFERENCES

Y. Alibert, C. Mordasini, W. Benz, Extrasolar planet population synthesis. iii. formation of

planets around stars of different masses. A&A 526, 63 (2011)

Y. Alibert, C. Mordasini, W. Benz, C. Winisdoerffer, Models of giant planet formation with

migration and disc evolution. A&A 434, 343 (2005)

S.M. Andrews, D.J. Wilner, A.M. Hughes, C. Qi, C.P. Dullemond, Protoplanetary disk

structures in ophiuchus. ii. extension to fainter sources. ApJ 723, 1241 (2010)

W. Benz, S. Ida, Y. Alibert, D. Lin, C. Mordasini, Planet Population Synthesis. Protostars

and Planets VI, 691–713 (2014)

K.-M. Dittkrist, C. Mordasini, H. Klahr, Y. Alibert, T. Henning, Impacts of planet migration

models on planetary populations. Effects of saturation, cooling and stellar irradiation.

A&A 567, 121 (2014)

P. Goldreich, S. Tremaine, The excitation of density waves at the lindblad and corotation

resonances by an external potential. ApJ 233, 857 (1979)

S. Ida, D.N.C. Lin, Toward a deterministic model of planetary formation. i. a desert in the

mass and semimajor axis distributions of extrasolar planets. ApJ 604, 388 (2004)

S. Ida, D.N.C. Lin, Toward a deterministic model of planetary formation. iv. effects of type

i migration. ApJ 673, 487 (2008)

S.H. Lubow, M. Seibert, P. Artymowicz, Disk accretion onto high-mass planets. ApJ 526,

1001 (1999)

D. Lynden-Bell, J.E. Pringle, The evolution of viscous discs and the origin of the nebular

variables. MNRAS 168, 603 (1974a)

D. Lynden-Bell, J.E. Pringle, The evolution of viscous discs and the origin of the nebular

variables. MNRAS 168, 603 (1974b)

C. Mordasini, P. Mollière, K.-M. Dittkrist, S. Jin, Y. Alibert, Global models of planet

formation and evolution. International Journal of Astrobiology 14, 201–232 (2015)

C. Mordasini, Y. Alibert, W. Benz, Extrasolar planet population synthesis. i. method, for-

mation tracks, and mass-distance distribution. A&A 501, 1139 (2009a)

C. Mordasini, Y. Alibert, W. Benz, D. Naef, Extrasolar planet population synthesis. ii.

statistical comparison with observations. A&A 501, 1161 (2009b)



– 16 –

C. Mordasini, Y. Alibert, H. Klahr, T. Henning, Characterization of exoplanets from their

formation. i. models of combined planet formation and evolution. A&A 547, 111

(2012)

C. Mordasini, H. Klahr, Y. Alibert, N. Miller, T. Henning A&A 566, 141 (2014)

S.-J. Paardekooper, C. Baruteau, A. Crida, W. Kley, A torque formula for non-isothermal

type i planetary migration - i. unsaturated horseshoe drag. MNRAS 401, 1950 (2010)

J.B. Pollack, O. Hubickyj, P.H. Bodenheimer, J.J. Lissauer, M. Podolak, Y. Greenzweig,

Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124,

62 (1996)

N.I. Shakura, R.A. Sunyaev, Black holes in binary systems. observational appearance. A&A

24, 337 (1973)

E.W. Thommes, M.J. Duncan, H.F. Levison, Oligarchic growth of giant planets. Icarus 161,

431 (2003)

D. Veras, P.J. Armitage, Outward migration of extrasolar planets to large orbital radii.

MNRAS 347, 613 (2004)

This preprint was prepared with the AAS LATEX macros v5.2.


